Removing barriers for adoption of biochar treatment to mitigate gaseous emissions from manure: can common binders improve the performance of powder and pelletized biochar?

Thumbnail Image
Date
2021-01-01
Authors
Koziel, Jacek
Chen, Baitong
Ungs, Ryan
Donkersloot, Cail
Cimino, Cameron
Cochran, Eric
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Koziel, Jacek
Professor Emeritus
Person
Cochran, Eric
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionCivil, Construction and Environmental EngineeringChemical and Biological EngineeringAgricultural and Biosystems EngineeringToxicologyChemical and Biological Engineering
Abstract

Biochar is a fine carbonaceous powder byproduct that has many potential practical applications to improve the sustainability of crop and animal production systems. Our recent work showed that biochar powder as a surficial manure additive reduces the emissions of odorous volatile organic compounds (VOCs), ammonia (NH3), and highly toxic hydrogen sulfide (H2S) in both the short- and long term. Biochar floating on or near the manure surface improves the mitigation effect in the long-term and reduces the need for reapplication. These recent discoveries improve the potential to mitigate gaseous emissions and the sustainability of manure as a fertilizer. We identified one practical barrier to adopting this technology on a farm scale. Biochar powder can be difficult to store, transport, and apply. We hypothesized that combining biochar treatment with other biomass-derived products and/or pelletizing biochar with common and abundant binders (water, wax, soybean-based epoxy) improves the practical aspects of emissions treatment. The objective was to determine raw biochar, soybean-derived epoxy (BioMAG), and biochar pellets' (made with a combination of water, wax, and BioMAG) ability to float in water. This research was conducted in two stages. First, we tested the floatability of raw (powder) biochar, BioMAG, and biochar layered on BioMAG). The second stage tested the biochar pellets made with water, wax, and BioMAG. All tests were completed in triplicates using red oak biochar. Preliminary observations confirmed the potential for improving biochar floatability in both powder and pelletized forms. A layer of soybean-based epoxy can support raw biochar powder and improve its floatability. The best treatment was the layered BioMAG (6.5 mm) with 6.5 mm of biochar on top that stayed afloat for at least 9 days. Also, biochar powder was held together with combinations of binders and made into pellets with improved application potential. The best pellet treatment was composed of 70% biochar, 15% water, and 15% wax. This mix of biochar and binders stayed afloat for at least 9 days. Both successful results warrant further research and trials of the best treatments to mitigate gaseous emissions from manure. The results of this research are needed for scaling up the surficial treatment of stored manure with biochar powder and pellets on the pilot- and farm-scales.

Comments

This conference presentation is published as O'Brien, Samuel C., Jacek A. Koziel, Baitong Chen, Ryan Ungs, Cail Donkersloot, Cameron Cimino, Chumki Banik, and Eric Cochran. "Removing barriers for adoption of biochar treatment to mitigate gaseous emissions from manure: can common binders improve the performance of powder and pelletized biochar?" ASABE Paper No. 2100088. ASABE Annual International Meeting, July 12-16, 2021. DOI: 10.13031/aim.202100088. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021