Statistical matching using fractional imputation
Statistical matching using fractional imputation
dc.contributor.author | Kim, Jae Kwang | |
dc.contributor.author | Kim, Jae Kwang | |
dc.contributor.author | Berg, Emily | |
dc.contributor.author | Park, Taesung | |
dc.contributor.department | Statistics | |
dc.date | 2018-02-18T16:50:54.000 | |
dc.date.accessioned | 2020-07-02T06:56:39Z | |
dc.date.available | 2020-07-02T06:56:39Z | |
dc.date.copyright | Fri Jan 01 00:00:00 UTC 2016 | |
dc.date.issued | 2016-06-01 | |
dc.description.abstract | <p>Statistical matching is a technique for integrating two or more data sets when information available for matching records for individual participants across data sets is incomplete. Statistical matching can be viewed as a missing data problem where a researcher wants to perform a joint analysis of variables that are never jointly observed. A conditional independence assumption is often used to create imputed data for statistical matching. We consider a general approach to statistical matching using parametric fractional imputation of Kim (2011) to create imputed data under the assumption that the specified model is fully identified. The proposed method does not have a convergent expectation-maximisation (EM) sequence if the model is not identified. We also present variance estimators appropriate for the imputation procedure. We explain how the method applies directly to the analysis of data from split questionnaire designs and measurement error models.</p> | |
dc.description.comments | <p>This article is published as J.K. Kim, E, Berg, and T. Park. (2016). “Statistical matching using fractional imputation”. <em>Survey Methodology</em>, 42, 19–40. Published with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/stat_las_pubs/121/ | |
dc.identifier.articleid | 1099 | |
dc.identifier.contextkey | 10453788 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | stat_las_pubs/121 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/90423 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/stat_las_pubs/121/2016_Kim_StatisticalMatching.pdf|||Fri Jan 14 19:12:53 UTC 2022 | |
dc.subject.disciplines | Design of Experiments and Sample Surveys | |
dc.subject.disciplines | Statistical Methodology | |
dc.subject.disciplines | Statistical Models | |
dc.subject.keywords | Data combination | |
dc.subject.keywords | Data fusion | |
dc.subject.keywords | Hot deck imputation | |
dc.subject.keywords | Split questionnaire design | |
dc.subject.keywords | Measurement error model | |
dc.title | Statistical matching using fractional imputation | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fdf914ae-e48d-4f4e-bfa2-df7a755320f4 | |
relation.isOrgUnitOfPublication | 264904d9-9e66-4169-8e11-034e537ddbca |
File
Original bundle
1 - 1 of 1
- Name:
- 2016_Kim_StatisticalMatching.pdf
- Size:
- 164.23 KB
- Format:
- Adobe Portable Document Format
- Description: