Dynamic response and impact energy loss in controlled rocking members

Thumbnail Image
Date
2019-12-30
Authors
Kalliontzis, Dimitrios
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sritharan, Sri
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Unbonded posttensioning anchors a rocking structural member to its foundation and produces its controlled rocking response when the member undergoes seismic action. Unlike rocking of free‐standing bodies, little attention has been given to the dynamic behavior of these controlled rocking members. This paper utilizes experiments of concrete structural members with unbonded posttensioning, varying member geometries, and levels of initial posttensioning force to (a) characterize the associated impact energy loss and (b) improve modeling of controlled rocking motions. Experimental results show that impact energy loss in controlled rocking members can be captured accurately using the coefficient of restitution (r) approach of the modified simple rocking model (MSRM). Based on the MSRM, a controlled rocking model (CRM) is developed that additionally accounts for the variations in contact length at the member‐to‐foundation (rocking) interface. The CRM reproduces the experimental responses of controlled rocking members with good accuracy and is used to investigate controlled rocking motions under horizontal base excitations.

Comments

This is the peer-reviewed version of the following article: Kalliontzis, Dimitrios, and Sri Sritharan. "Dynamic response and impact energy loss in controlled rocking members." Earthquake Engineering & Structural Dynamics. (2019), which has been published in final form at DOI: 10.1002/eqe.3240. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections