Efficient direct lignin fuel cells enabled by hierarchical nickel–iron phosphide nanosheets as an anode catalyst

Thumbnail Image
Date
2022-09-13
Authors
Liu, Fei
Lusi, A.
Radhakrishnan, Harish
Liu, Hengzhou
Qin, Hantang
Bai, Xianglan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
The Royal Society of Chemistry
Authors
Person
Li, Wenzhen
Professor
Person
Jiang, Shan
Associate Professor
Person
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Abstract
Lignin fuel cells are an emerging technology to sustainably produce electricity from renewable natural resources. A high-performance anode catalyst is highly desirable to enhance the power density of lignin fuel cells for practical applications. Here we demonstrated hierarchical nickel–iron phosphide (NiFeP) nanosheets as a novel anode catalyst for direct lignin fuel cells (DLFCs) at low temperature. NiFeP was grown on nickel foam with its stoichiometry readily controlled in the synthesis. When NiFeP with a Ni/Fe ratio of 1 was used, the fuel cell produced a maximum power density of 24 mW cm−2, over 200 times higher than that of microbial fuel cells or alkaline fuel cells. This performance is comparable to liquid flow fuel cells using liquid catalysts. The P incorporation in NiFeP was found to be essential, whereas P leaching resulted in a significant loss of activity, and re-phosphorization of the used catalyst can recover up to ∼80% of the freshly prepared catalyst. In addition, hierarchical nanostructures consisting of 2D nanosheets were also beneficial. The power density of lignin fuel cells could be further improved when the cell was fed with purified lignin with less inorganic ash. Our work provided a new platform of anode catalysts for power generation from biomass.
Comments
This article is published as Liu, Fei, A. Lusi, Harish Radhakrishnan, Hengzhou Liu, Wenzhen Li, Hantang Qin, Shan Jiang, Xianglan Bai, and Hu Shan. "Efficient direct lignin fuel cells enabled by hierarchical nickel–iron phosphide nanosheets as an anode catalyst." Sustainable Energy & Fuels 6, no. 21 (2022): 4866-4872. DOI: 10.1039/D2SE00930G. Copyright 2022 The Royal Society of Chemistry. Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0). Posted with permission.
Description
Keywords
Citation
DOI
Copyright
Collections