Magnesium-catalyzed hydrosilylation of a,b-unsaturated esters

Thumbnail Image
Date
2015-08-01
Authors
Lampland, Nicole
Pindwal, Aradhana
Neal, Steven
Schlauderaff, Shealyn
Ellern, Arkady
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sadow, Aaron
Professor
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

ToMMgHB(C6F5)3 (1, ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) catalyzes the 1,4-hydrosilylation of α,β-unsaturated esters. This magnesium hydridoborate compound is synthesized by the reaction of ToMMgMe, PhSiH3, and B(C6F5)3. Unlike the transient ToMMgH formed from the reaction of ToMMgMe and PhSiH3, the borate adduct 1 persists in solution and in the solid state. Crystallographic characterization reveals tripodal coordination of the HB(C6F5)3 moiety to the six-coordinate magnesium center with a ∠Mg–H–B of 141(3)°. The pathway for formation of 1 is proposed to involve the reaction of ToMMgMe and a PhSiH3/B(C6F5)3 adduct because the other possible intermediates, ToMMgH and ToMMgMeB(C6F5)3, react to give an intractable black solid and ToMMgC6F5, respectively. Under catalytic conditions, silyl ketene acetals are isolated in high yield from the addition of hydrosilanes to α,β-unsaturated esters with 1 as the catalyst.

Comments

This article is from Chemical Science 6 (2015): 6901, doi: 10.1039/c5sc02435h. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections