Issues and recent advances in soil respiration

Thumbnail Image
Date
2004-06-01
Authors
Hibbard, K.
Law, B.
Ryan, M.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Takle, Eugene
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

The terrestrial carbon cycle is intrinsically tied to climate, hydrology, nutrient cycles, and the production of biomass through photosynthesis. Over two-thirds of terrestrial carbon is stored below ground in soils, and a significant amount of atmospheric CO2 is processed by soils every year.Thus, soil respiration is a key process that underlies our understanding of the carbon cycle. Soil CO2 fluxes are the sum of root (autotrophic) and microbial (heterotrophic) respiration. Several factors contribute to soil respiration, including photosynthetic supply to roots, substrate quality and availability, temperature, and moisture.

Comments

This article is published as Hibbard, K. A., B. E. Law, M. G. Ryan, and E. S. Takle. "Issues and recent advances in soil respiration." Eos, Transactions American Geophysical Union85, no. 22 (2004): 220-220. DOI:10.1029/2004EO220009. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections