Measurements of double-helicity asymmetries in inclusive J/Psi production in longitudinally polarized p plus p collisions at root s=510 GeV

Date
2016-12-29
Authors
Adare, Andrew
Apadula, Nicole
Ogilvie, Craig
Ding, Lei
Hill, John
Hotvedt, Nels
Lajoie, John
Lebedev, Alexandre
Ogilvie, Craig
Patel, Milap
Perry, Joshua
Rinn, Timothy
Rosati, Marzia
Sen, Abhisek
Shimomura, M.
Timilsina, Arbin
Whitaker, Shawn
et al.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Physics and Astronomy
Organizational Unit
Journal Issue
Series
Department
Physics and Astronomy
Abstract

We report the double-helicity asymmetry, A(LL)(J/Psi), in inclusive J/Psi production at forward rapidity as a function of transverse momentum p(T) and rapidity |y|. The data analyzed were taken during root s = 510 GeV longitudinally polarized p + p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the PHENIX detector. At this collision energy, J/Psi particles are predominantly produced through gluon-gluon scatterings, thus A(LL)(J/Psi) is sensitive to the gluon polarization inside the proton. We measured A(LL)(J/Psi) by detecting the decay daughter muon pairs mu(+)mu(-) within the PHENIX muon spectrometers in the rapidity range 1.2 < |y| < 2.2. In this kinematic range, we measured the A(LL)(J/Psi) to be 0.012 +/- 0.010 (stat) +/- 0.003 (syst). The A(LL)(J.Psi) can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken x: one at moderate range x approximate to 5 x 10(-2) where recent data of jet and pi(0) double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-x region x approximate to 2 x 10(-3). Thus our new results could be used to further constrain the gluon polarization for x < 5 x 10(-2).

Comments

This article is from Physical Review D 94 (2016): 112008, doi:10.1103/PhysRevD.94.112008. Posted with permission.

Description
Keywords
Citation
DOI
Collections