The Role of Critical Exponents in Blowup Theorems
Date
1990
Authors
Levine, Howard
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
relationships.hasVersion
Series
Department
Mathematics
Abstract
In this article various extensions of an old result of Fujita are considered for the initial value problem for the reaction-diffusion equation $u_t = \Delta u + u^p $ in $R^N $ with $p > 1$ and nonnegative initial values. Fujita showed that if $1 < p < 1 + {2 / N}$, then the initial value problem had no nontrivial global solutions while if $p > 1 + {2 / N}$, there were nontrivial global solutions. This paper discusses similar results for other geometries and other equations including a nonlinear wave equation and a nonlinear Schrödinger equation.
Comments
This is an article from SIAM Review 32 (1990): 262, doi:10.1137/1032046. Posted with permission.
Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1990