The Role of Critical Exponents in Blowup Theorems

Thumbnail Image
Date
1990
Authors
Levine, Howard
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

In this article various extensions of an old result of Fujita are considered for the initial value problem for the reaction-diffusion equation $u_t = \Delta u + u^p $ in $R^N $ with $p > 1$ and nonnegative initial values. Fujita showed that if $1 < p < 1 + {2 / N}$, then the initial value problem had no nontrivial global solutions while if $p > 1 + {2 / N}$, there were nontrivial global solutions. This paper discusses similar results for other geometries and other equations including a nonlinear wave equation and a nonlinear Schrödinger equation.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This is an article from SIAM Review 32 (1990): 262, doi:10.1137/1032046. Posted with permission.

Rights Statement
Copyright
Mon Jan 01 00:00:00 UTC 1990
Funding
DOI
Supplemental Resources
Collections