C5 is almost a fractalizer

dc.contributor.author Mattes, Connor
dc.contributor.author Lidicky, Bernard
dc.contributor.author Pfender, Florian
dc.contributor.department Mathematics
dc.date 2021-02-24T12:58:01.000
dc.date.accessioned 2021-02-26T02:54:50Z
dc.date.available 2021-02-26T02:54:50Z
dc.date.copyright Fri Jan 01 00:00:00 UTC 2021
dc.date.issued 2023-03-30
dc.description.abstract <p>We determine the maximum number of induced copies of a 5‐cycle in a graph on n vertices for every n. Every extremal construction is a balanced iterated blow‐up of the 5‐cycle with the possible exception of the smallest level where for n = 8, the Möbius ladder achieves the same number of induced 5‐cycles as the blow‐up of a 5‐cycle on eight vertices. This result completes the work of Balogh, Hu, Lidický, and Pfender, who proved an asymptotic version of the result. Similarly to their result, we also use the flag algebra method, but we use a new and more sophisticated approach which allows us to extend its use to small graphs.</p>
dc.description.comments This article is published as Lidický, Bernard, Connor Mattes, and Florian Pfender. "C5 is almost a fractalizer." Journal of Graph Theory (2023). doi:10.1002/jgt.22957. Posted with permission.<br/><br/>This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/math_pubs/265/
dc.identifier.articleid 1272
dc.identifier.contextkey 21803362
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/265
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/96660
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/265/2021_Lidicky_AlmostFractalizerPreprint.pdf|||Fri Jan 14 23:03:21 UTC 2022
dc.source.uri https://doi.org/10.1002/jgt.22957
dc.subject.disciplines Algebra
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.subject.disciplines Mathematics
dc.subject.keywords five‐cycle
dc.subject.keywords flag algebras
dc.subject.keywords fractalizer
dc.subject.keywords inducibility
dc.title C5 is almost a fractalizer
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication a1d8f5ab-9124-4104-981c-8ba1e426e3ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2023-Lidicky-AlmostFractalizer.pdf
Size:
933.29 KB
Format:
Adobe Portable Document Format
Description:
Collections