C5 is almost a fractalizer
dc.contributor.author | Mattes, Connor | |
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.author | Pfender, Florian | |
dc.contributor.department | Mathematics | |
dc.date | 2021-02-24T12:58:01.000 | |
dc.date.accessioned | 2021-02-26T02:54:50Z | |
dc.date.available | 2021-02-26T02:54:50Z | |
dc.date.copyright | Fri Jan 01 00:00:00 UTC 2021 | |
dc.date.issued | 2023-03-30 | |
dc.description.abstract | <p>We determine the maximum number of induced copies of a 5‐cycle in a graph on n vertices for every n. Every extremal construction is a balanced iterated blow‐up of the 5‐cycle with the possible exception of the smallest level where for n = 8, the Möbius ladder achieves the same number of induced 5‐cycles as the blow‐up of a 5‐cycle on eight vertices. This result completes the work of Balogh, Hu, Lidický, and Pfender, who proved an asymptotic version of the result. Similarly to their result, we also use the flag algebra method, but we use a new and more sophisticated approach which allows us to extend its use to small graphs.</p> | |
dc.description.comments | This article is published as Lidický, Bernard, Connor Mattes, and Florian Pfender. "C5 is almost a fractalizer." Journal of Graph Theory (2023). doi:10.1002/jgt.22957. Posted with permission.<br/><br/>This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/265/ | |
dc.identifier.articleid | 1272 | |
dc.identifier.contextkey | 21803362 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/265 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/96660 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/265/2021_Lidicky_AlmostFractalizerPreprint.pdf|||Fri Jan 14 23:03:21 UTC 2022 | |
dc.source.uri | https://doi.org/10.1002/jgt.22957 | |
dc.subject.disciplines | Algebra | |
dc.subject.disciplines | Discrete Mathematics and Combinatorics | |
dc.subject.disciplines | Mathematics | |
dc.subject.keywords | five‐cycle | |
dc.subject.keywords | flag algebras | |
dc.subject.keywords | fractalizer | |
dc.subject.keywords | inducibility | |
dc.title | C5 is almost a fractalizer | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a1d8f5ab-9124-4104-981c-8ba1e426e3ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2023-Lidicky-AlmostFractalizer.pdf
- Size:
- 933.29 KB
- Format:
- Adobe Portable Document Format
- Description: