An upper bound for the minimum rank of a graph

dc.contributor.author Berman, Avi
dc.contributor.author Friedland, Shmuel
dc.contributor.author Hogben, Leslie
dc.contributor.author Rothblum, Uriel
dc.contributor.author Shader, Bryan
dc.contributor.department Mathematics
dc.date 2018-02-18T05:33:50.000
dc.date.accessioned 2020-06-30T06:00:50Z
dc.date.available 2020-06-30T06:00:50Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2008
dc.date.issued 2008-10-01
dc.description.abstract <p>For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n×n matrices A whose (i,j)th entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid for matrices over any infinite field, but need not be true for matrices over finite fields.</p>
dc.description.comments <p>This is a manuscript of an article from <em>Linear Algebra and its Applications </em>429 (2008): 1629, doi: <a href="http://dx.doi.org/10.1016/j.laa.2008.04.038" target="_blank">10.1016/j.laa.2008.04.038</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/math_pubs/65/
dc.identifier.articleid 1076
dc.identifier.contextkey 9875672
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/65
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/54662
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/65/2008_Hogben_UpperBound.pdf|||Sat Jan 15 01:23:42 UTC 2022
dc.source.uri 10.1016/j.laa.2008.04.038
dc.subject.disciplines Algebra
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.subject.keywords Minimum rank
dc.subject.keywords Maximum nullity
dc.subject.keywords Delta conjecture
dc.subject.keywords Minimum degree
dc.subject.keywords Rank
dc.subject.keywords Graph
dc.subject.keywords Matrix
dc.title An upper bound for the minimum rank of a graph
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 0131698a-00df-41ad-8919-35fb630b282b
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2008_Hogben_UpperBound.pdf
Size:
241.12 KB
Format:
Adobe Portable Document Format
Description:
Collections