An upper bound for the minimum rank of a graph
dc.contributor.author | Berman, Avi | |
dc.contributor.author | Friedland, Shmuel | |
dc.contributor.author | Hogben, Leslie | |
dc.contributor.author | Rothblum, Uriel | |
dc.contributor.author | Shader, Bryan | |
dc.contributor.department | Mathematics | |
dc.date | 2018-02-18T05:33:50.000 | |
dc.date.accessioned | 2020-06-30T06:00:50Z | |
dc.date.available | 2020-06-30T06:00:50Z | |
dc.date.copyright | Tue Jan 01 00:00:00 UTC 2008 | |
dc.date.issued | 2008-10-01 | |
dc.description.abstract | <p>For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n×n matrices A whose (i,j)th entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid for matrices over any infinite field, but need not be true for matrices over finite fields.</p> | |
dc.description.comments | <p>This is a manuscript of an article from <em>Linear Algebra and its Applications </em>429 (2008): 1629, doi: <a href="http://dx.doi.org/10.1016/j.laa.2008.04.038" target="_blank">10.1016/j.laa.2008.04.038</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/65/ | |
dc.identifier.articleid | 1076 | |
dc.identifier.contextkey | 9875672 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/65 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/54662 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/65/2008_Hogben_UpperBound.pdf|||Sat Jan 15 01:23:42 UTC 2022 | |
dc.source.uri | 10.1016/j.laa.2008.04.038 | |
dc.subject.disciplines | Algebra | |
dc.subject.disciplines | Discrete Mathematics and Combinatorics | |
dc.subject.keywords | Minimum rank | |
dc.subject.keywords | Maximum nullity | |
dc.subject.keywords | Delta conjecture | |
dc.subject.keywords | Minimum degree | |
dc.subject.keywords | Rank | |
dc.subject.keywords | Graph | |
dc.subject.keywords | Matrix | |
dc.title | An upper bound for the minimum rank of a graph | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0131698a-00df-41ad-8919-35fb630b282b | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2008_Hogben_UpperBound.pdf
- Size:
- 241.12 KB
- Format:
- Adobe Portable Document Format
- Description: