Bayesian Network Learning via Topological Order

Thumbnail Image
Date
2017-01-01
Authors
Klabjan, Diego
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

We propose a mixed integer programming (MIP) model and iterative algorithms based on topological orders to solve optimization problems with acyclic constraints on a directed graph. The proposed MIP model has a significantly lower number of constraints compared to popular MIP models based on cycle elimination constraints and triangular inequalities. The proposed iterative algorithms use gradient descent and iterative reordering approaches, respectively, for searching topological orders. A computational experiment is presented for the Gaussian Bayesian network learning problem, an optimization problem minimizing the sum of squared errors of regression models with L1 penalty over a feature network with application of gene network inference in bioinformatics.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Supply Chain and Information Systems
Type
article
Comments

This article is published as Y.W. Park and D. Klabjan (2017) Bayesian Newtwork Learning via Topological Order. Journal of Machine Learning Research 18(99);1-32.

Rights Statement
Copyright
Wed Jan 01 00:00:00 UTC 2020
Funding
DOI
Supplemental Resources
Source
Collections