Large-scale gene co-expression network as a source of functional annotation for cattle genes

dc.contributor.author Beiki, Hamid
dc.contributor.author Nejati-Javaremi, Ardeshir
dc.contributor.author Pakdel, Abbas
dc.contributor.author Masoudi-Nejad, Ali
dc.contributor.author Hu, Zhi-Liang
dc.contributor.author Reecy, James
dc.contributor.department Department of Animal Science
dc.date 2019-04-22T07:52:56.000
dc.date.accessioned 2020-06-29T23:40:44Z
dc.date.available 2020-06-29T23:40:44Z
dc.date.copyright Fri Jan 01 00:00:00 UTC 2016
dc.date.issued 2016-01-01
dc.description.abstract <p>Background: Genome sequencing and subsequent gene annotation of genomes has led to the elucidation of many genes, but in vertebrates the actual number of protein coding genes are very consistent across species (~20,000). Seven years after sequencing the cattle genome, there are still genes that have limited annotation and the function of many genes are still not understood, or partly understood at best. Based on the assumption that genes with similar patterns of expression across a vast array of tissues and experimental conditions are likely to encode proteins with related functions or participate within a given pathway, we constructed a genome-wide Cattle Gene Co-expression Network (CGCN) using 72 microarray datasets that contained a total of 1470 Affymetrix Genechip Bovine Genome Arrays that were retrieved from either NCBI GEO or EBI ArrayExpress.</p> <p>Results: The total of 16,607 probe sets, which represented 11,397 genes, with unique Entrez ID were consolidated into 32 co-expression modules that contained between 29 and 2569 probe sets. All of the identified modules showed strong functional enrichment for gene ontology (GO) terms and Reactome pathways. For example, modules with important biological functions such as response to virus, response to bacteria, energy metabolism, cell signaling and cell cycle have been identified. Moreover, gene co-expression networks using “guilt-byassociation” principle have been used to predict the potential function of 132 genes with no functional annotation. Four unknown Hub genes were identified in modules highly enriched for GO terms related to leukocyte activation (LOC509513), RNA processing (LOC100848208), nucleic acid metabolic process (LOC100850151) and organic-acid metabolic process (MGC137211). Such highly connected genes should be investigated more closely as they likely to have key regulatory roles.</p> <p>Conclusions: We have demonstrated that the CGCN and its corresponding regulons provides rich information for experimental biologists to design experiments, interpret experimental results, and develop novel hypothesis on gene function in this poorly annotated genome. The network is publicly accessible at http://www.animalgenome. org/cgi-bin/host/reecylab/d.</p>
dc.description.comments <p>This article is published as Beiki, Hamid, Ardeshir Nejati-Javaremi, Abbas Pakdel, Ali Masoudi-Nejad, Zhi-Liang Hu, and James M. Reecy. "Large-scale gene co-expression network as a source of functional annotation for cattle genes." <em>BMC genomics</em> 17 (2016): 846. doi: <a href="https://doi.org/10.1186/s12864-016-3176-2">10.1186/s12864-016-3176-2</a>.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/ans_pubs/426/
dc.identifier.articleid 1428
dc.identifier.contextkey 14061057
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ans_pubs/426
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/9853
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/ans_pubs/426/2016_Reecy_LargeScale.pdf|||Sat Jan 15 00:13:56 UTC 2022
dc.source.uri 10.1186/s12864-016-3176-2
dc.subject.disciplines Agriculture
dc.subject.disciplines Animal Sciences
dc.subject.disciplines Bioinformatics
dc.subject.disciplines Cell and Developmental Biology
dc.subject.disciplines Genetics and Genomics
dc.title Large-scale gene co-expression network as a source of functional annotation for cattle genes
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication fb994cd9-94d5-4370-94ab-f33934c4cd6f
relation.isOrgUnitOfPublication 85ecce08-311a-441b-9c4d-ee2a3569506f
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2016_Reecy_LargeScale.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Description:
Collections