Giant magnetic anisotropy and tunnelling of the magnetization in Li-2(Li1-xFex)N

Thumbnail Image
Date
2014-02-24
Authors
Jesche, A.
McCallum, R. W.
Thimmaiah, S.
Jacobs, J. L.
Taufour, V.
Kreyssig, Andreas
Houk, R. S.
Bud’ko, Sergey
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li2(Li1−xFex)N. An extrapolated, magnetic anisotropy field of 220 T and a coercivity field of over 11 T at 2 K outperform all known hard ferromagnets and single-molecular magnets. Steps in the hysteresis loops and relaxation phenomena in striking similarity to single-molecular magnets are particularly pronounced for x≪1 and indicate the presence of nanoscale magnetic centres. Quantum tunnelling, in the form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10 K. The simple crystal structure, the availability of large single crystals and the ability to vary the Fe concentration make Li2(Li1−xFex)N an ideal model system to study macroscopic quantum effects at elevated temperatures and also a basis for novel functional magnetic materials.

Series Number
Journal Issue
Is Version Of
Versions
Series
Type
article
Comments

This is a manuscript of an article published as Jesche, Anton, R. W. McCallum, S. Thimmaiah, J. L. Jacobs, V. Taufour, A. Kreyssig, R. S. Houk, S. L. Bud’Ko, and P. C. Canfield. "Giant magnetic anisotropy and tunnelling of the magnetization in Li 2 (Li 1− x Fe x) N." Nature Communications 5 (2014): 3333. DOI: 10.1038/ncomms4333. Posted with permission.

Rights Statement
Copyright
Wed Jan 01 00:00:00 UTC 2014
Funding
DOI
Supplemental Resources
Collections