Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts

Thumbnail Image
Date
2019-01-22
Authors
Gao, Meirong
Ploessl, Deon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.

Series Number
Journal Issue
Is Version Of
Versions
Series
Type
article
Comments

This article is published as Gao, Meirong, Deon Ploessl, and Zengyi Shao, "Enhancing the Co-utilization of Biomass-derived Mixed Sugars by Yeasts." Frontiers in Microbiology 9 (2019): 3264. doi: 10.3389/fmicb.2018.03264. Posted with permission.

Rights Statement
Copyright
Tue Jan 01 00:00:00 UTC 2019
Funding
DOI
Supplemental Resources
Collections