Shape Stability of Truncated Octahedral fcc Metal Nanocrystals

dc.contributor.author Lai, King
dc.contributor.author Chen, Minda
dc.contributor.author Yu, Jiaqi
dc.contributor.author Han, Yong
dc.contributor.author Huang, Wenyu
dc.contributor.author Evans, James
dc.contributor.department Ames National Laboratory
dc.contributor.department Department of Physics and Astronomy
dc.contributor.department Department of Chemistry
dc.contributor.department Ames Laboratory
dc.date 2021-08-04T22:55:55.000
dc.date.accessioned 2021-08-14T01:37:51Z
dc.date.available 2021-08-14T01:37:51Z
dc.date.embargo 2022-07-07
dc.date.issued 2021-07-07
dc.description.abstract <p>Metallic nanocrystals (NCs) can be synthesized with tailored nonequilibrium shapes to enhance desired properties, e.g., octahedral fcc metal NCs optimize catalytic activity associated with {111} facets. However, maintenance of optimized properties requires stability against thermal reshaping. Thus, we analyze the reshaping of truncated fcc metal octahedra mediated by surface diffusion using a stochastic atomistic-level model with energetic input parameters for Pd. The model describes NC thermodynamics by an effective nearest-neighbor interaction and includes a realistic treatment of diffusive hopping for undercoordinated surface atoms. Kinetic Monte Carlo simulation reveals that the effective barrier, <em>E</em>eff, for the initial stage of reshaping is strongly tied to the degree of truncation of the vertices in the synthesized initial octahedral shapes. This feature is elucidated via exact analytic determination of the energy variation along the optimal reshaping pathway at low-temperature (<em>T</em>), which involves transfer of atoms from truncated {100} vertex facets to form new layers on {111} side facets. Deviations from predictions of the low-<em>T</em> analysis due to entropic effects are more prominent for higher <em>T</em> and larger NC sizes.</p>
dc.identifier archive/lib.dr.iastate.edu/ameslab_manuscripts/961/
dc.identifier.articleid 1966
dc.identifier.contextkey 24184523
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ameslab_manuscripts/961
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/kv7kyR5v
dc.language.iso en
dc.relation.ispartofseries IS-J 10557
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_manuscripts/961/0-IS_J_10557_SI.pdf|||Sat Jan 15 02:35:39 UTC 2022
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_manuscripts/961/IS_J_10557.pdf|||Sat Jan 15 02:35:40 UTC 2022
dc.source.uri 10.1021/acsami.1c07894
dc.subject.disciplines Metallurgy
dc.subject.disciplines Nanoscience and Nanotechnology
dc.subject.keywords Palladium
dc.subject.keywords Nanocubes
dc.subject.keywords Diffusion
dc.subject.keywords Layers
dc.subject.keywords Energy
dc.supplemental.bitstream IS_J_10557_SI.pdf
dc.title Shape Stability of Truncated Octahedral fcc Metal Nanocrystals
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 6acd59cc-28ec-46dd-8bf0-51bcc56d79f9
relation.isAuthorOfPublication ccb1c87c-15e0-46f4-bd16-0df802755a5b
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 4a05cd4d-8749-4cff-96b1-32eca381d930
relation.isOrgUnitOfPublication 42864f6e-7a3d-4be3-8b5a-0ae3c3830a11
File
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
IS_J_10557.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
0-IS_J_10557_SI.pdf
Size:
260.22 KB
Format:
Adobe Portable Document Format
Description:
Collections