Analyzing Large Workers’ Compensation Claims Using Generalized Linear Models and Monte Carlo Simulation

Thumbnail Image
Date
2018-12-01
Authors
Freeman, Steven
Mosher, Gretchen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
relationships.hasVersion
Series
Department
Agricultural and Biosystems Engineering
Abstract

Insurance practitioners rely on statistical models to predict future claims in order to provide financial protection. Proper predictive statistical modeling is more challenging when analyzing claims with lower frequency, but high costs. The paper investigated the use of predictive generalized linear models (GLMs) to address this challenge. Workers’ compensation claims with costs equal to or more than US$100,000 were analyzed in agribusiness industries in the Midwest of the USA from 2008 to 2016. Predictive GLMs were built with gamma, Weibull, and lognormal distributions using the lasso penalization method. Monte Carlo simulation models were developed to check the performance of predictive models in cost estimation. The results show that the GLM with gamma distribution has the highest predictivity power (R2 = 0.79). Injury characteristics and worker’s occupation were predictive of large claims’ occurrence and costs. The conclusions of this study are useful in modifying and estimating insurance pricing within high-risk agribusiness industries. The approach of this study can be used as a framework to forecast workers’ compensation claims amounts with rare, high-cost events in other industries. This work is useful for insurance practitioners concerned with statistical and predictive modeling in financial risk analysis.

Comments

This article is published as Davoudi Kakhki, Fatemeh, Steven Freeman, and Gretchen Mosher. "Analyzing Large Workers’ Compensation Claims Using Generalized Linear Models and Monte Carlo Simulation." Safety 4, no. 4 (2018): 57. DOI: 10.3390/safety4040057. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections