Breeding Maize Maternal Haploid Inducers

Thumbnail Image
Date
2020-05-12
Authors
Trentin, Henrique Uliana
Frei, Ursula
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Maize doubled haploid (DH) lines are usually created in vivo, through crosses with maternal haploid inducers. These inducers have the inherent ability of generating seeds with haploid embryos when used to pollinate other genotypes. The resulting haploid plants are treated with a doubling agent and self-pollinated, producing completely homozygous seeds. This rapid method of inbred line production reduces the length of breeding cycles and, consequently, increases genetic gain. Such advantages explain the wide adoption of this technique by large, well-established maize breeding programs. However, a slower rate of adoption was observed in medium to small-scale breeding programs. The high price and/or lack of environmental adaptation of inducers available for licensing, or the poor performance of those free of cost, might explain why smaller operations did not take full advantage of this technique. The lack of adapted inducers is especially felt in tropical countries, where inducer breeding efforts are more recent. Therefore, defining optimal breeding approaches for inducer development could benefit many breeding programs which are in the process of adopting the DH technique. In this manuscript, we review traits important to maize maternal haploid inducers, explain their genetic basis, listing known genes and quantitative trait loci (QTL), and discuss different breeding approaches for inducer development. The performance of haploid inducers has an important impact on the cost of DH line production.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This article is published as Uliana Trentin, H.; Frei, U.K.; Lübberstedt, T. Breeding Maize Maternal Haploid Inducers. Plants 2020, 9, 614. doi: 10.3390/plants9050614.

Rights Statement
Copyright
Wed Jan 01 00:00:00 UTC 2020
Funding
DOI
Supplemental Resources
Collections