Anharmonic vibrational computations with a quartic force field for curvilinear coordinates

dc.contributor.author Gordon, Mark
dc.contributor.author Tani, Ryosuke
dc.contributor.author De Silva, Nuwan
dc.contributor.author Njegic, Bosiljka
dc.contributor.author Gordon, Mark S.
dc.contributor.author Taketsugu, Tetsuya
dc.contributor.department Chemistry
dc.contributor.department Ames Laboratory
dc.date.accessioned 2022-02-28T23:51:10Z
dc.date.available 2022-02-28T23:51:10Z
dc.date.issued 2019-08-08
dc.description.abstract The direct vibrational self-consistent field (VSCF) method, which combines anharmonic vibrational theory with electronic structure calculations, is a sophisticated theoretical approach to calculate the vibrational spectra of molecules from first principles. Combining the VSCF approach with the quartic force field (QFF) is a good alternative to direct VSCF, with a lower computational cost. QFF is a 4th-order Taylor expansion of the potential energy surface near an equilibrium geometry. In this study, a new strategy is proposed to derive the QFF in terms of normal coordinates; the QFF coefficients are determined through numerical differentiations of the energy by representing the normal coordinates in internal rather than Cartesian coordinates. The VSCF/QFF-internal method was implemented in the General Atomic and Molecular Electronic Structure System electronic structure program and applied to the evaluations of the fundamental vibrational frequencies of HNO2, HNO3, H2O dimer, and H2O trimer, using Møller-Plesset second order perturbation theory and the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The results are much improved, especially for the intermolecular vibrational modes, compared with the Cartesian coordinate representation of the normal coordinates in the VSCF/QFF approach.
dc.description.comments This article is published as Harabuchi, Yu, Ryosuke Tani, Nuwan De Silva, Bosiljka Njegic, Mark S. Gordon, and Tetsuya Taketsugu. "Anharmonic vibrational computations with a quartic force field for curvilinear coordinates." The Journal of Chemical Physics 151, no. 6 (2019): 064104. DOI: 10.1063/1.5096167. Copyright 2019 Author(s). Posted with permission.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/4vGXBNNr
dc.language.iso en
dc.publisher American Institute of Physics
dc.source.uri https://doi.org/10.1063/1.5096167 *
dc.title Anharmonic vibrational computations with a quartic force field for curvilinear coordinates
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 1a5927c0-5a5f-440e-86e0-9da8dc6afda0
relation.isOrgUnitOfPublication 42864f6e-7a3d-4be3-8b5a-0ae3c3830a11
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
File
Original bundle
Now showing 1 - 1 of 1
Name:
2019-GordonMark-AnharmonicVibrational.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
Description:
Collections