A robust calibration-assisted method for linear mixed effects model under cluster-specific nonignorable missingness

Date
2018-10-01
Authors
Kwon, Yongchan
Kim, Jae Kwang
Kim, Jae Kwang
Paik, Myunghee Cho
Kim, Hongsoo
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Statistics
Organizational Unit
Journal Issue
Series
Department
Statistics
Abstract

We propose a method for linear mixed effects models when the covariates are completely observed but the outcome of interest is subject to missing under cluster-specific nonignorable (CSNI) missingness. Our strategy is to replace missing quantities in the full-data objective function with unbiased predictors derived from inverse probability weighting and calibration technique. The proposed approach can be applied to estimating equations or likelihood functions with modified E-step, and does not require numerical integration as do previous methods. Unlike usual inverse probability weighting, the proposed method does not require correct specification of the response model as long as the CSNI assumption is correct, and renders inference under CSNI without a full distributional assumption. Consistency and asymptotic normality are shown with a consistent variance estimator. Simulation results and a data example are presented.

Comments

This article is published as Y. Kwon, J.K. Kim, M.C. Paik, and H. Kim (2018). A robust calibration-assisted method for linear mixed effects model under cluster-specific nonignorable missingness. Statistica Sinica, 28, 1907-1928. doi: 10.5705/ss.202016.0317. Posted with permission.

Description
Keywords
Citation
DOI
Collections