Streaming Algorithms for k-Means Clustering with Fast Queries

dc.contributor.author Zhang, Yu
dc.contributor.author Tangwongsan, Kanat
dc.contributor.author Tirthapura, Srikanta
dc.contributor.department Department of Computer Science
dc.contributor.department Department of Electrical and Computer Engineering
dc.date 2018-04-28T10:49:00.000
dc.date.accessioned 2020-06-30T02:02:32Z
dc.date.available 2020-06-30T02:02:32Z
dc.date.issued 2017-01-01
dc.description.abstract <p>We present methods for k-means clustering on a stream with a focus on providing fast responses to clustering queries. When compared with the current state-of-the-art, our methods provide a substantial improvement in the time to answer a query for cluster centers, while retaining the desirable properties of provably small approximation error, and low space usage. Our algorithms are based on a novel idea of "coreset caching" that reuses coresets (summaries of data) computed for recent queries in answering the current clustering query. We present both provable theoretical results and detailed experiments demonstrating their correctness and efficiency.</p>
dc.description.comments <p>This is a manuscript of the article Zhang, Yu, Kanat Tangwongsan, and Srikanta Tirthapura. "Streaming algorithms for k-means clustering with fast queries." <em>arXiv preprint arXiv:1701.03826</em> (2017). Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/ece_pubs/171/
dc.identifier.articleid 1173
dc.identifier.contextkey 12001288
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ece_pubs/171
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/20996
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/ece_pubs/171/2017_Tirthapura_StreamingAlgorithms.pdf|||Fri Jan 14 21:16:15 UTC 2022
dc.subject.disciplines Computer Sciences
dc.subject.disciplines Electrical and Computer Engineering
dc.title Streaming Algorithms for k-Means Clustering with Fast Queries
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication b0235db2-0a72-4dd1-8d5f-08e5e2e2bf7d
relation.isOrgUnitOfPublication f7be4eb9-d1d0-4081-859b-b15cee251456
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2017_Tirthapura_StreamingAlgorithms.pdf
Size:
596.96 KB
Format:
Adobe Portable Document Format
Description:
Collections