Developing a phenomenological equation to predict yield strength from composition and microstructure in β processed Ti-6Al-4V

Thumbnail Image
Date
2016-01-01
Authors
Ghamarian, Iman
Hayes, B.
Samimi, Peyman
Welk, B.A.
Fraser, H.L.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

A constituent-based phenomenological equation to predict yield strength values from quantified measurements of the microstructure and composition of β processed Ti-6Al-4V alloy was developed via the integration of artificial neural networks and genetic algorithms. It is shown that the solid solution strengthening contributes the most to the yield strength (~80% of the value), while the intrinsic yield strength of the two phases and microstructure have lower effects (~10% for both terms). Similarities and differences between the proposed equation and the previously established phenomenological equation for the yield strength prediction of the α+β processed Ti-6Al-4V alloys are discussed. While the two equations are very similar in terms of the intrinsic yield strength of the two constituent phases, the solid solution strengthening terms and the ‘Hall-Petch’-like effect from the alpha lath, there is a pronounced difference in the role of the basketweave factor in strengthening. Finally, Monte Carlo simulations were applied to the proposed phenomenological equation to determine the effect of measurement uncertainties on the estimated yield strength values.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This is a manuscript of an article published as Ghamarian, I., B. Hayes, P. Samimi, B. A. Welk, H. L. Fraser, and P. C. Collins. "Developing a phenomenological equation to predict yield strength from composition and microstructure in β processed Ti-6Al-4V." Materials Science and Engineering: A 660 (2016): 172-180. doi: 10.1016/j.msea.2016.02.052. Posted with permission.

Rights Statement
Copyright
Fri Jan 01 00:00:00 UTC 2016
Funding
DOI
Supplemental Resources
Collections