Comparison of Dry Matter Loss Rates from Static and Dynamic Grain Respiration Measurement Systems for Soybeans at 18% Moisture Content and 30°C

Thumbnail Image
Date
2021-01-01
Authors
Gatsakos, Ana
Trevisan, Lucas
Sood, Kaneeka
Danao, Mary-Grace
Rausch, Kent
Gates, Richard
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Animal ScienceAgricultural and Biosystems EngineeringEgg Industry Center
Abstract

Time to reach 0.5% dry matter loss (DML) is the estimated maximum allowable storage time (MAST) for shelled corn and has been suggested for use with other grains. Respiration studies have reported various estimates of this threshold depending on the type of grain respiration measurement system (GRMS) and storage conditions tested. The objectives of this study were (1) to design and evaluate two GRMS in which oxygen needed for respiration was limited in a static system (S-GRMS) or continuously supplied in a dynamic system (D-GRMS) during storage and (2) to compare the effects of GRMS on DML rates (vDML) for 18% moisture content soybeans stored at 30°C for 20 d. In this study, S-GRMS and D-GRMS units were designed to conduct respiration tests. Respired CO2 (mg CO2) was measured over time and used to calculate the specific mass of respired CO2 (mg CO2 kg-1 d.b. beans) and subsequent DML (%) using stoichiometric ratios from the respiration chemical reaction. DML rates, vDML (% d-1), were estimated by least squares linear regression of DML and time data. Four replications of respiration tests were conducted in each GRMS. Average estimates of vDML were 0.0157% d-1 and 0.0189% d-1 for S-GRMS and D-GRMS, respectively. Mean vDML from D-GRMS tests was 1.2 times greater than mean vDML from S-GRMS but not statistically different (p = 0.09). However, the coefficient of variation was 8 times greater for D-GRMS than for S-GRMS. More studies with a wider range of storage conditions should be conducted for development of a safety factor between both systems prior to using data from respiration of soybeans in the literature to estimate MAST.

Comments

This article is published as Gatsakos, Ana B., Lucas R. Trevisan, Kaneeka Sood, Mary-Grace C. Danao, Kent D. Rausch, and Richard S. Gates. "Comparison of Dry Matter Loss Rates from Static and Dynamic Grain Respiration Measurement Systems for Soybeans at 18% Moisture Content and 30° C." Transactions of the ASABE 64, no. 3 (2021): 893-903. DOI: 10.13031/trans.14161. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections