The Number of MCMC Draws Needed to Compute Bayesian Credible Bounds

Thumbnail Image
Date
2014-03-01
Authors
Liu, Jia
Nordman, Daniel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Bayesian credible bounds produced from Markov chain Monte Carlo (MCMC) procedures contain Monte Carlo error and thus may require a long chain in order to have a reasonable degree of repeatability. This is especially true when there is a substantial amount of autocorrelation in the chain realization. Repeatability would be important in some applications where it would be undesirable to report numerical values containing substantial Monte Carlo error in the least significant digits. The endpoints of a credible interval correspond to quantiles of the empirical distribution of the MCMC draws from the marginal posterior distribution of the quantity of interest. Our goal is to provide an algorithm to choose the number of MCMC draws that will provide, with high probability, a specified amount of precision (i.e., the number of correct significant digits) in the interval endpoints.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This preprint was published as Jia Liu, Daniel J. Nordman, and William Q. Meeker, "The Number of MCMC Draws Needed to Compute Bayesian Credible Bounds".

Rights Statement
Copyright
Funding
Subject Categories
DOI
Supplemental Resources
Source
Collections