Interweaving Markov Chain Monte Carlo Strategies for Efficient Estimation of Dynamic Linear Models

dc.contributor.author Simpson, Matthew
dc.contributor.author Niemi, Jarad
dc.contributor.author Roy, Vivekananda
dc.contributor.department Department of Statistics (LAS)
dc.date 2018-02-18T05:20:16.000
dc.date.accessioned 2020-07-02T06:58:09Z
dc.date.available 2020-07-02T06:58:09Z
dc.date.copyright Sun Jan 01 00:00:00 UTC 2017
dc.date.issued 2017-02-16
dc.description.abstract <p>In dynamic linear models (DLMs) with unknown fixed parameters, a standard Markov chain Monte Carlo (MCMC) sampling strategy is to alternate sampling of latent states conditional on fixed parameters and sampling of fixed parameters conditional on latent states. In some regions of the parameter space, this standard data augmentation (DA) algorithm can be inefficient. To improve efficiency, we apply the interweaving strategies of Yu and Meng to DLMs. For this, we introduce three novel alternative DAs for DLMs: the scaled errors, wrongly scaled errors, and wrongly scaled disturbances. With the latent states and the less well known scaled disturbances, this yields five unique DAs to employ in MCMC algorithms. Each DA implies a unique MCMC sampling strategy and they can be combined into interweaving and alternating strategies that improve MCMC efficiency. We assess these strategies using the local level model and demonstrate that several strategies improve efficiency relative to the standard approach and the most efficient strategy interweaves the scaled errors and scaled disturbances. Supplementary materials are available online for this article.</p>
dc.description.comments <p>This is a manuscript of an article from <em>Journal of Computational and Graphical Statistics </em>26 (2017): 152, <a href="http://dx.doi.org/10.1080/10618600.2015.1105748.%20" target="_blank">doi: 10.1080/10618600.2015.1105748</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/stat_las_pubs/89/
dc.identifier.articleid 1088
dc.identifier.contextkey 9817254
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath stat_las_pubs/89
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/90691
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/stat_las_pubs/89/2017_Niemi_InterweavingMarkov.pdf|||Sat Jan 15 02:18:44 UTC 2022
dc.source.uri 10.1080/10618600.2015.1105748
dc.subject.disciplines Statistical Methodology
dc.subject.disciplines Statistical Models
dc.subject.disciplines Statistics and Probability
dc.subject.keywords Ancillary augmentation
dc.subject.keywords Centered parameterization
dc.subject.keywords Data augmentation
dc.subject.keywords Noncentered parameterization
dc.subject.keywords Reparameterization
dc.subject.keywords State-space model
dc.subject.keywords Sufficient augmentation
dc.subject.keywords Time series
dc.title Interweaving Markov Chain Monte Carlo Strategies for Efficient Estimation of Dynamic Linear Models
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 31b412ec-d498-4926-901e-2cb5c2b5a31d
relation.isOrgUnitOfPublication 264904d9-9e66-4169-8e11-034e537ddbca
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2017_Niemi_InterweavingMarkov.pdf
Size:
883.72 KB
Format:
Adobe Portable Document Format
Description:
Collections