Interweaving Markov Chain Monte Carlo Strategies for Efficient Estimation of Dynamic Linear Models
dc.contributor.author | Simpson, Matthew | |
dc.contributor.author | Niemi, Jarad | |
dc.contributor.author | Roy, Vivekananda | |
dc.contributor.department | Department of Statistics (LAS) | |
dc.date | 2018-02-18T05:20:16.000 | |
dc.date.accessioned | 2020-07-02T06:58:09Z | |
dc.date.available | 2020-07-02T06:58:09Z | |
dc.date.copyright | Sun Jan 01 00:00:00 UTC 2017 | |
dc.date.issued | 2017-02-16 | |
dc.description.abstract | <p>In dynamic linear models (DLMs) with unknown fixed parameters, a standard Markov chain Monte Carlo (MCMC) sampling strategy is to alternate sampling of latent states conditional on fixed parameters and sampling of fixed parameters conditional on latent states. In some regions of the parameter space, this standard data augmentation (DA) algorithm can be inefficient. To improve efficiency, we apply the interweaving strategies of Yu and Meng to DLMs. For this, we introduce three novel alternative DAs for DLMs: the scaled errors, wrongly scaled errors, and wrongly scaled disturbances. With the latent states and the less well known scaled disturbances, this yields five unique DAs to employ in MCMC algorithms. Each DA implies a unique MCMC sampling strategy and they can be combined into interweaving and alternating strategies that improve MCMC efficiency. We assess these strategies using the local level model and demonstrate that several strategies improve efficiency relative to the standard approach and the most efficient strategy interweaves the scaled errors and scaled disturbances. Supplementary materials are available online for this article.</p> | |
dc.description.comments | <p>This is a manuscript of an article from <em>Journal of Computational and Graphical Statistics </em>26 (2017): 152, <a href="http://dx.doi.org/10.1080/10618600.2015.1105748.%20" target="_blank">doi: 10.1080/10618600.2015.1105748</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/stat_las_pubs/89/ | |
dc.identifier.articleid | 1088 | |
dc.identifier.contextkey | 9817254 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | stat_las_pubs/89 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/90691 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/stat_las_pubs/89/2017_Niemi_InterweavingMarkov.pdf|||Sat Jan 15 02:18:44 UTC 2022 | |
dc.source.uri | 10.1080/10618600.2015.1105748 | |
dc.subject.disciplines | Statistical Methodology | |
dc.subject.disciplines | Statistical Models | |
dc.subject.disciplines | Statistics and Probability | |
dc.subject.keywords | Ancillary augmentation | |
dc.subject.keywords | Centered parameterization | |
dc.subject.keywords | Data augmentation | |
dc.subject.keywords | Noncentered parameterization | |
dc.subject.keywords | Reparameterization | |
dc.subject.keywords | State-space model | |
dc.subject.keywords | Sufficient augmentation | |
dc.subject.keywords | Time series | |
dc.title | Interweaving Markov Chain Monte Carlo Strategies for Efficient Estimation of Dynamic Linear Models | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 31b412ec-d498-4926-901e-2cb5c2b5a31d | |
relation.isOrgUnitOfPublication | 264904d9-9e66-4169-8e11-034e537ddbca |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2017_Niemi_InterweavingMarkov.pdf
- Size:
- 883.72 KB
- Format:
- Adobe Portable Document Format
- Description: