Modeling of deoxy- and dideoxyaldohexopyranosyl ring puckering with MM3(92)

Thumbnail Image
Date
2001-10-01
Authors
Rockey, William
Dowd, Michael
French, Alfred
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Extensive variations of the ring structures of three deoxyaldohexopyranoses, l-fucose, d-quinovose, and l-rhamnose, and four dideoxyaldohexopyranoses, d-digitoxose, abequose, paratose, and tyvelose, were studied by energy minimization with the molecular mechanics algorithm MM3(92). Chair conformers, 4C1 ind-quinovose and the equivalent 1C4 in l-fucose and l-rhamnose, overwhelmingly dominate in the three deoxyhexoses; in the d-dideoxyhexoses, 4C1 is again dominant, but with increased amounts of 1C4 forms in the α anomers of the three 3,6-dideoxyhexoses, abequose, paratose, and tyvelose and in both α and β anomers of the 2,6-dideoxyhexose d-digitoxose. In general, modeled proton–proton coupling constants agreed well with experimental values. Computed anomeric ratios strongly favor the β configuration except ford-digitoxose, which is almost equally divided between α and β configurations, and l-rhamnose, where the β configuration is somewhat favored. MM3(92) appears to overstate the prevalence of the equatorial β anomer in all three deoxyhexoses, as earlier found with fully oxygenated aldohexopyranoses.

Comments

This is a post-print of an article from Carbohydrate Research, 335, no. 4 (October 2001): 261–273, doi: 10.1016/S0008-6215(01)00240-3.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2001
Collections