Nondestructive Ultrasonic Characterization of the Orientation Distribution of Short-Fiber Composites
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The ease of fabrication and relatively low cost of composites containing short glass or ceramic fibers embedded in a polymer or metal matrix has made them attractive candidates for a wide range of applications. The preferential alignment, or misalignment depending on one’s view, of the short fibers results in an overall texture of the composite and strongly influences its mechanical and physical response, for example, stiffness, conductivity, strength, and so on. The orientation of the short fibers depends strongly on the processing conditions. From a process-control viewpoint, it is imperative to determine if a composite component has adequate strength, stiffness, and so on, and it is preferable to obtain this information nondestructively. In short-fiber reinforced composites, the orientation distribution of the short fibers is the most significant variable that determines these overall properties. Thus its determination is essential.