Using defects as a ‘fossil record’ to help interpret complex processes during additive manufacturing: as applied to raster-scanned electron beam powder bed additively manufactured Ti–6Al–4V
Date
2023-08-27
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Abstract
Defects in parts produced by additive manufacturing, instead of simply being perceived as deleterious, can act as important sources of information associated with the complex physical processes that occur during materials deposition and subsequent thermal cycles. Indeed, they act as materials-state ‘fossil’ records of the dynamic AM process. The approach of using defects as epoch-like records of prior history has been developed while studying additively manufactured Ti–6Al–4V and has given new insights into processes that may otherwise remain either obscured or unquantified. Analogous to ‘epochs,’ the evolution of these defects often is characterized by physics that span across a temporal length scale. To demonstrate this approach, a broad range of analyses including optical and electron microscopy, X-ray computed tomography, energy-dispersive spectroscopy, and electron backscatter diffraction have been used to characterize a raster-scanned electron beam Ti–6Al–4V sample. These analysis techniques provide key characteristics of defects such as their morphology, location within the part, complex compositional fields interacting with the defects, and structures on the free surfaces of defects. Observed defects have been classified as banding, spherical porosity, and lack of fusion. Banding is directly related to preferential evaporation of Al, which has an influence on mechanical properties. Lack-of-fusion defects can be used to understand columnar grain growth, fluid flow of melt pools, humping, and spattering events.
Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments
This article is published as O’Donnell, K., Quintana, M.J., Kenney, M.J. et al. Using defects as a ‘fossil record’ to help interpret complex processes during additive manufacturing: as applied to raster-scanned electron beam powder bed additively manufactured Ti–6Al–4V. J Mater Sci 58, 13398–13421 (2023). https://doi.org/10.1007/s10853-023-08838-0. Posted with permission.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.