Odour reducing microbial-mineral additive for poultry manure treatment

Thumbnail Image
Date
2017-06-01
Authors
Opaliński, Sebastian
Maurer, Devin
Koziel, Jacek
Korczyński, Mariusz
Dobrzański, Zbigniew
Kołacz, Roman
Gutarowska, Beata
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Rice, Somchai
Assistant Scientist III
Person
Koziel, Jacek
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionCivil, Construction and Environmental EngineeringAgricultural and Biosystems EngineeringToxicology
Abstract

Poultry production systems are associated with emissions of odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases, and particulate matter. Development of mitigation technologies for these emissions is important. Previous laboratory-scale research on microbial-mineral treatment has shown to be effective for mitigation of NH3, H2S and amines emissions from poultry manure. The aim of this research was to assess the effectiveness of surface application of a microbial-mineral treatment for other important odorants, i.e., phenolics and sulfur-containing VOCs. Microbial-mineral litter additive consisting of 20% (w/w) of bacteria powder (six strains of heterotrophic bacteria) and 80% of mineral carrier (perlite-bentonite) was used at a dose of 500 g∙m-2(per ~31 kg of manure). Samples of air were collected in two series, 4 and 7 days after application of additives. An odor profile of the poultry manure was determined using simultaneous chemical and sensory analysis. Reduction levels of VOCs determined on Day 4 was between 31% and 83% for mineral adsorbent treatment and in the range of 9% and 96% for microbial-mineral additive, depending on the analyzed compound. Reduction levels on Day 7 were considerably lower than on Day 4, suggesting that the odorous VOCs treatment efficacy is relatively short. There was no significant difference between treatments consisting of microbial-mineral additive and mineral carrier alone.

Comments

This is a manuscript of an article published as Kalus, Kajetan, Sebastian Opaliński, Devin Maurer, Somchai Rice, Jacek A. Koziel, Mariusz Korczyński, Zbigniew Dobrzański, Roman Kołacz, and Beata Gutarowska. "Odour reducing microbial-mineral additive for poultry manure treatment." Frontiers of Environmental Science & Engineering 11, no. 3 (2017): 7. The final publication is available at Springer via DOI: 10.1007/s11783-017-0928-4. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections