Making Kr+1-free graphs r-partite

dc.contributor.author Balogh, József
dc.contributor.author Clemen, Felix Christian
dc.contributor.author Lavrov, Mikhail
dc.contributor.author Lidicky, Bernard
dc.contributor.author Pfender, Florian
dc.contributor.department Department of Mathematics
dc.date.accessioned 2024-09-11T20:15:20Z
dc.date.available 2024-09-11T20:15:20Z
dc.date.issued 2021-07
dc.description.abstract The Erdős–Simonovits stability theorem states that for all ε > 0 there exists α > 0 such that if G is a Kr+1-free graph on n vertices with e(G) > ex(n, Kr+1)– α n2, then one can remove εn2 edges from G to obtain an r-partite graph. Füredi gave a short proof that one can choose α = ε. We give a bound for the relationship of α and ε which is asymptotically sharp as ε → 0.
dc.description.comments This article is published as Balogh J, Clemen FC, Lavrov M, Lidický B, Pfender F. Making Kr+1-free graphs r-partite. Combinatorics, Probability and Computing. 2021;30(4):609-618. doi:10.1017/S0963548320000590.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/7wbODKPv
dc.language.iso en
dc.publisher Cambridge University Press
dc.relation.hasversion Making Kr+1-Free Graphs r-partite
dc.rights © The Author(s), 2020. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.source.uri https://doi.org/10.1017/S0963548320000590 *
dc.subject.disciplines DegreeDisciplines::Physical Sciences and Mathematics::Mathematics::Discrete Mathematics and Combinatorics
dc.title Making Kr+1-free graphs r-partite
dc.type article
dspace.entity.type Publication
relation.hasVersion db13c8bf-f248-4dbd-8ef4-a2d5e0431dbc
relation.isAuthorOfPublication a1d8f5ab-9124-4104-981c-8ba1e426e3ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2021-Lidicky-MakingFree.pdf
Size:
364.74 KB
Format:
Adobe Portable Document Format
Description:
Collections