Making Kr+1-free graphs r-partite
dc.contributor.author | Balogh, József | |
dc.contributor.author | Clemen, Felix Christian | |
dc.contributor.author | Lavrov, Mikhail | |
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.author | Pfender, Florian | |
dc.contributor.department | Department of Mathematics | |
dc.date.accessioned | 2024-09-11T20:15:20Z | |
dc.date.available | 2024-09-11T20:15:20Z | |
dc.date.issued | 2021-07 | |
dc.description.abstract | The Erdős–Simonovits stability theorem states that for all ε > 0 there exists α > 0 such that if G is a Kr+1-free graph on n vertices with e(G) > ex(n, Kr+1)– α n2, then one can remove εn2 edges from G to obtain an r-partite graph. Füredi gave a short proof that one can choose α = ε. We give a bound for the relationship of α and ε which is asymptotically sharp as ε → 0. | |
dc.description.comments | This article is published as Balogh J, Clemen FC, Lavrov M, Lidický B, Pfender F. Making Kr+1-free graphs r-partite. Combinatorics, Probability and Computing. 2021;30(4):609-618. doi:10.1017/S0963548320000590. | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/7wbODKPv | |
dc.language.iso | en | |
dc.publisher | Cambridge University Press | |
dc.relation.hasversion | Making Kr+1-Free Graphs r-partite | |
dc.rights | © The Author(s), 2020. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. | |
dc.source.uri | https://doi.org/10.1017/S0963548320000590 | * |
dc.subject.disciplines | DegreeDisciplines::Physical Sciences and Mathematics::Mathematics::Discrete Mathematics and Combinatorics | |
dc.title | Making Kr+1-free graphs r-partite | |
dc.type | article | |
dspace.entity.type | Publication | |
relation.hasVersion | db13c8bf-f248-4dbd-8ef4-a2d5e0431dbc | |
relation.isAuthorOfPublication | a1d8f5ab-9124-4104-981c-8ba1e426e3ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2021-Lidicky-MakingFree.pdf
- Size:
- 364.74 KB
- Format:
- Adobe Portable Document Format
- Description: