Exploring multiple operating scenarios to identify low-cost, high nitrate removal strategies for electrically-stimulated woodchip bioreactors

Thumbnail Image
Law, Ji-Yeow
Moorman, Thomas
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Iowa Nutrient Research Center
The Iowa Nutrient Research Center was established to pursue science-based approaches to evaluating the performance of current and emerging nutrient management practices and providing recommendations on practice implementation and development. Publications in this digital repository are products of INRC-funded research. The INRC is headquartered at Iowa State University and operates in collaboration with the University of Iowa and the University of Northern Iowa. Additional project information is available at: https://www.cals.iastate.edu/inrc/
Journal Issue
Is Version Of
Agricultural and Biosystems EngineeringIowa Nutrient Research Center

Woodchip bioreactors are recognized as an effective best management practice in the Iowa Nutrient Reduction Strategy. This edge-of-field practice intercepts and removes NO3-N, thereby reducing the NO3-N concentration in tile drainage before being discharged into surface water. Actual NO3-N load reductions realized by woodchip bioreactors are impacted by bioreactor size, hydraulic retention time (HRT), and denitrification efficiency. A typical woodchip bioreactor in Iowa may have 0.07% bioreactor area with respect to treatment area, 4–8 h HRT, and 43% mean denitrification efficiency. Here, we explored the potential of using electrically stimulated woodchip bioreactors to achieve greater NO3-N removal, and estimated the costs of this approach. Batch experiments were conducted to determine the denitrification efficiency of electrically stimulated and traditional woodchip bioreactors at different HRTs and current densities. The resulting data was used to model costs and denitrification efficiency in 75 scenarios, covering a range of bioreactor volumes, HRTs, current densities, and annual durations of electrical stimulation periods. For each scenario, we reported the estimated annual NO3-N load reduction and NO3-N removal cost. We found that electrically stimulated woodchip bioreactors may remove an additional 37–72% annual NO3-N load than a traditional woodchip bioreactor, but at the expense of higher NO3-N removal costs, which were increased by 138–194%.


This article is published as Law, J. Y., M. L. Soupir, D. R. Raman, and T. B. Moorman. "Exploring multiple operating scenarios to identify low-cost, high nitrate removal strategies for electrically-stimulated woodchip bioreactors." Ecological Engineering 120 (2018): 146-153. DOI: 10.1016/j.ecoleng.2018.05.001. Posted with permission.