A Linearization Beam-Hardening Correction Method for X-Ray Computed Tomographic Imaging of Structural Ceramics
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Computed tomographic (CT) imaging with both monochromatic and polychromatic x-ray sources can be a powerful NDE method for characterization (e. g., measurement of density gradients) as well as flaw detection (e. g., detection of cracks, voids, inclusions) in ceramics. However, the use of polychromatic x-ray sources can cause image artifacts and overall image degradation through beam hardening (BH) effects [1]. Beam hardening occurs because (i) x-ray attenuation in a given material is energy dependent and (ii) data collection in CT systems is not energy selective. Without an appropriate correction, the BH effect prevents the establishment of an absolute scale for density measurement. Thus, quantitative density comparisons between samples of the same material but of different geometrical shape becomes unreliable [2].