Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont

dc.contributor.author König, Lena
dc.contributor.author Siegl, Alexander
dc.contributor.author Penz, Thomas
dc.contributor.author Haider, Susanne
dc.contributor.author Wentrup, Cecilia
dc.contributor.author Polzin, Julia
dc.contributor.author Mann, Evelyne
dc.contributor.author Schmitz-Esser, Stephan
dc.contributor.author Domman, Daryl
dc.contributor.author Horn, Matthias
dc.contributor.department Department of Animal Science
dc.date 2020-01-09T18:36:23.000
dc.date.accessioned 2020-06-29T23:41:30Z
dc.date.available 2020-06-29T23:41:30Z
dc.date.copyright Sun Jan 01 00:00:00 UTC 2017
dc.date.issued 2017-01-01
dc.description.abstract <p>Chlamydiae are obligate intracellular bacteria comprising well-known human pathogens and ubiquitous symbionts of protists, which are characterized by a unique developmental cycle. Here we comprehensively analyzed gene expression dynamics of <em>Protochlamydia amoebophila</em> during infection of its <em>Acanthamoeba</em> host by RNA sequencing. This revealed a highly dynamic transcriptional landscape, where major transcriptional shifts are conserved among chlamydial symbionts and pathogens. Our data served to propose a time-resolved model for type III protein secretion during the developmental cycle, and we provide evidence for a biphasic metabolism of <em>P. amoebophila</em> during infection, which involves energy parasitism and amino acids as the carbon source during initial stages and a postreplicative switch to endogenous glucose-based ATP production. This fits well with major transcriptional changes in the amoeba host, where upregulation of complex sugar breakdown precedes the <em>P. amoebophila</em> metabolic switch. The biphasic chlamydial metabolism represents a unique adaptation to exploit eukaryotic host cells, which likely contributed to the evolutionary success of this group of microbes.</p>
dc.description.comments <p>This article is published as König L, Siegl A, Penz T, Haider S, Wentrup C, Polzin J, Mann E, Schmitz-Esser S, Domman D, Horn M. 2017. Biphasic metabolism and host interaction of a chlamydial symbiont. mSystems 2:e00202-16. doi: <a href="https://doi.org/10.1128/mSystems.00202-16" target="_blank">10.1128/mSystems.00202-16</a>.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/ans_pubs/523/
dc.identifier.articleid 1524
dc.identifier.contextkey 16150189
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ans_pubs/523
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/9960
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/ans_pubs/523/2017_Schmitz_BiphasicMetabolism.pdf|||Sat Jan 15 00:48:21 UTC 2022
dc.source.uri 10.1128/mSystems.00202-16
dc.subject.disciplines Bacteriology
dc.subject.disciplines Environmental Microbiology and Microbial Ecology
dc.subject.disciplines Genetics and Genomics
dc.subject.disciplines Pathogenic Microbiology
dc.subject.keywords Protochlamydia
dc.subject.keywords RNA-seq
dc.subject.keywords chlamydia
dc.subject.keywords developmental cycle
dc.subject.keywords gene expression
dc.subject.keywords host-microbe interaction
dc.subject.keywords metabolism
dc.subject.keywords symbiont
dc.subject.keywords type III secretion system
dc.title Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 247d6138-be53-44be-9e88-220424e98124
relation.isOrgUnitOfPublication 85ecce08-311a-441b-9c4d-ee2a3569506f
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2017_Schmitz_BiphasicMetabolism.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
Description:
Collections