Metal homoepitaxial growth at very low temperatures: Lattice-gas models with restricted downward funneling

Thumbnail Image
Date
2001-07-01
Authors
Caspersen, K.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

We develop and analyze 1+1- and 2+1-dimensional (d) models for multilayer homoepitaxial growth of metal films at low temperatures (T), where intralayer terrace diffusion is inoperative. This work is motivated by recent variable-temperature scanning tunneling microscopy studies of Ag/Ag(100) homoepitaxy down to 50 K. Adsorption sites are bridge sites in our 1+1d models, and fourfold hollow sites in our 2+1d models for fcc(100) or bcc(100) surfaces. For growth at 0 K, we introduce a “restricted downward funneling” model, wherein deposited atoms can be trapped on the sides of steep nanoprotrusions rather than always funneling down to lower adsorption sites. This leads to the formation of overhangs and internal defects (or voids), and associated “rough” growth. Upon increasing T, we propose that a series of interlayer diffusion processes become operative, with activation barriers below that for terrace diffusion. This leads to “smooth” growth of the film for higherT (but still within the regime where terrace diffusion is absent), similar to that observed in models incorporating “complete downward funneling.”

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This article is from Physical Review B 64 (2001): 075401, doi: 10.1103/PhysRevB.64.075401.

Rights Statement
Copyright
Mon Jan 01 00:00:00 UTC 2001
Funding
DOI
Supplemental Resources
Collections