Conformational analysis of gossypol and its derivatives by molecular mechanics

Thumbnail Image
Beisel, Chase
Dowd, Michael
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of

Conformations and inversion pathways leading to racemization of all the tautomers of gossypol, gossypolone, anhydrogossypol, and a diethylamine Schiff's base of gossypol were investigated with MM3(2000). All forms have hindered rotation because of clashes between the methyl carbon atom and oxygen-containing moieties ortho to the bond linking the two naphthalene rings. Inversion energies generally agree with available experimental data. Gossypol preferentially inverts in its dihemiacetal tautomeric form through the cis pathway (where similar groups clash). Gossypolone inverts more easily than gossypol, and preferentially through the trans pathway (where dissimilar groups clash) when one of its outer rings has an enol-keto group and the other has an aldehyde group. Anhydrogossypol racemizes through the cis pathway. The bridge bond and the ortho exo-cyclic bonds in all the structures bend from planarity, and the inner naphthalene rings pucker to accommodate the inversion. For gossypol, the transition is achieved through greater bending of the exo-cyclic bonds (up to 12°) and less distortion of the inner benzyl rings (q≤0.34 Å), (up to 12.7°) . For gossypolone the transition occurs with greater distortion of the inner benzyl rings (q≤0.63 Å) and less out-of-plane bending (up to 8.4°). By isolating individual clashes, their contribution to the overall barrier can be analyzed, as shown for the dialdehyde tautomer of gossypol.


This is a post-print of an article from Journal of Molecular Structure: THEOCHEM, 730, no. 1–3 (7 October 2005): 51–58, doi: 10.1016/j.theochem.2005.05.010.

Sat Jan 01 00:00:00 UTC 2005