Persistence of 5:3 plates in RE5(SixGe1-x)4 alloys

Thumbnail Image
Date
2006-10-01
Authors
Ugurlu, O.
Chumbley, L.
Fisher, C.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Studies of RE5(SixGe1-x)4 alloys, where RE equals rare earth, have revealed a second-phase having a thin-plate morphology in essentially every alloy examined, independent of exact composition and matrix crystal structure. Identified as having a composition approximating Gd5(SixGe1-x)3 and a hexagonal crystal structure in the Gd-based system, it has been suggested that the observed thin-plate second phases seen in this family of rare earth alloys are all most likely of the form RE5(SixGe1-x)3. A number of interesting observations suggest that the formation of these second-phase plates is somewhat unusual. The purpose of this article is to investigate the stability of this second phase in Gd- and Er-based compounds. The stability was investigated as a function of thermal cycling and large-scale composition fluctuations. The results of scanning and transmission electron microscopy (SEM, TEM) studies indicate that the RE5(SixGe1-x)3 phase is extremely stable once it forms in a RE5(SixGe1-x)4 matrix.

Comments

This article is from Journal of Materials Research 21 (2006): 2669-2674, doi: 10.1557/jmr.2006.0326. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2006
Collections