A nonstandard empirical likelihood for time series
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version of BEL based on a simple, though nonstandard, data-blocking rule which uses a data block of every possible length. Consequently, the method does not involve the usual block selection issues and is also anticipated to exhibit better coverage performance. Its nonstandard blocking scheme, however, induces nonstandard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi-square one, but is distribution-free and can be reproduced through straightforward simulations. Numerical studies indicate that the proposed method generally exhibits better coverage accuracy than standard BEL.
Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
Comments
This article is from Annals of Statistics 41 (2013): 3050, doi: 10.1214/13-AOS1174. Posted with permission.