Bayesian NDE Defect Signal Analysis

Thumbnail Image
Date
2007-01-01
Authors
Zhang, Benhong
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Dogandžić, Aleksandar
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

We develop a hierarchical Bayesian approach for estimating defect signals from noisy measurements and apply it to nondestructive evaluation (NDE) of materials. We propose a parametric model for the shape of the defect region and assume that the defect signals within this region are random with unknown mean and variance. Markov chain Monte Carlo (MCMC) algorithms are derived for simulating from the posterior distributions of the model parameters and defect signals. These algorithms are then utilized to identify potential defect regions and estimate their size and reflectivity parameters. Our approach provides Bayesian confidence regions (credible sets) for the estimated parameters, which are important in NDE applications. We specialize the proposed framework to elliptical defect shape and Gaussian signal and noise models and apply it to experimental ultrasonic C-scan data from an inspection of a cylindrical titanium billet. We also outline a simple classification scheme for separating defects from nondefects using estimated mean signals and areas of the potential defects

Comments

This is a manuscript of an article from IEEE Transactions on Signal Processing 55 (2007): 372, doi:10.1109/TSP.2006.882064. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2007
Collections