The Spectrum of Triangle-free Graphs

dc.contributor.author Balogh, József
dc.contributor.author Clemen, Felix Christian
dc.contributor.author Lidicky, Bernard
dc.contributor.author Norin, Sergey
dc.contributor.author Volec, Jan
dc.contributor.department Mathematics
dc.date.accessioned 2022-04-11T12:58:35Z
dc.date.available 2022-04-11T12:58:35Z
dc.date.issued 2023-01-04
dc.description.abstract Denote by qn(G) the smallest eigenvalue of the signless Laplacian matrix of an n-vertex graph G. Brandt conjectured in 1997 that for regular triangle-free graphs qn(G) ≤ 4n25. We prove a stronger result: If G is a triangle-free graph then qn(G) ≤ 15n94 < 4n25. Brandt's conjecture is a subproblem of two famous conjectures of Erdős:<br/>(1) Sparse-Half-Conjecture: Every n-vertex triangle-free graph has a subset of vertices of size ⌈n2⌉ spanning at most n2/50 edges.<br/>(2) Every n-vertex triangle-free graph can be made bipartite by removing at most n2/25 edges.<br/> In our proof we use linear algebraic methods to upper bound qn(G) by the ratio between the number of induced paths with 3 and 4 vertices. We give an upper bound on this ratio via the method of flag algebras.
dc.description.comments This preprint is made available through arXiv at doi:https://doi.org/10.48550/arXiv.2204.00093.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/5w5pm0dz
dc.language.iso en
dc.relation.isversionof The Spectrum of Triangle-Free Graphs
dc.rights This work is licensed under the Creative Commons Attribution 4.0 License.
dc.source.uri https://doi.org/10.48550/arXiv.2204.00093 *
dc.title The Spectrum of Triangle-free Graphs
dc.type Preprint
dspace.entity.type Publication
relation.isAuthorOfPublication a1d8f5ab-9124-4104-981c-8ba1e426e3ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
relation.isVersionOf be5e5f6d-6b25-45df-b5a0-3dd0aa85eaf9
File
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023-Lidicky-SpectrumTriangleFreePreprint.pdf
Size:
496.12 KB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
2022-Lidicky-SpectrumTriangleFreePreprint.pdf
Size:
128.87 KB
Format:
Adobe Portable Document Format
Description:
Collections