The impact of step orography on flow in the Eta Model: Two contrasting examples

Thumbnail Image
Date
2000-01-01
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gallus, William
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Simulations were performed using the Eta Model with its eta vertical coordinate and stepwise treatment of terrain, and with a substitution of the terrain-following sigma vertical coordinate to investigate the impact of step orography on flow near high mountains. Two different cases were simulated: (i) a downslope windstorm along the Front Range of the Rocky Mountains, and (ii) stably stratified flow blocked by high mountains in Taiwan. Flow separation on the lee side of the mountains, previously shown to occur in idealized two-dimensional Eta simulations, was also apparent in these real data cases, even for the downslope wind event. The step orography resulted in a substantial underestimate of wind speeds to the lee of the Rockies during the windstorm. Near the surface, both the eta and sigma simulations of the Taiwan blocking event were comparable. For both events, the use of step orography resulted in much weaker mountain waves than occurred when the sigma vertical coordinate was used. Localized vertical velocity perturbations associated directly with the step corners were minor for these cases.

Comments

This article is from Weather and Forecasting 15 (2000): 630, doi: 10.1175/1520-0434(2000)015<0630:TIOSOO>2.0.CO;2. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2000
Collections