Mechanisms of Skyrmion and Skyrmion Crystal Formation from the Conical Phase

dc.contributor.author Kim, Tae-Hoon
dc.contributor.author Zhao, Haijun
dc.contributor.author Xu, Ben
dc.contributor.author Jensen, Brandt
dc.contributor.author King, Alexander
dc.contributor.author Kramer, Matthew
dc.contributor.author Nan, Cewen
dc.contributor.author Ke, Liquin
dc.contributor.author Zhou, Lin
dc.contributor.department Ames National Laboratory
dc.contributor.department Materials Science and Engineering
dc.contributor.department Ames Laboratory
dc.date 2020-04-22T22:23:09.000
dc.date.accessioned 2020-06-29T23:24:27Z
dc.date.available 2020-06-29T23:24:27Z
dc.date.embargo 2021-03-23
dc.date.issued 2020-03-23
dc.description.abstract <p>Real-space topological magnetic structures such as skyrmions and merons are promising candidates for information storage and transport. However, the microscopic mechanisms that control their formation and evolution are still unclear. Here, using in situ Lorentz transmission electron microscopy, we demonstrate that skyrmion crystals (SkXs) can nucleate, grow, and evolve from the conical phase in the same ways that real nanocrystals form from vapors or solutions. More intriguingly, individual skyrmions can also “reproduce” by division in a mitosis-like process that allows them to annihilate SkX lattice imperfections, which is not available to crystals made of mass-conserving particles. Combined string method and micromagnetic calculations show that competition between repulsive and attractive interactions between skyrmions governs particle-like SkX growth, but nonconservative SkX growth appears to be defect mediated. Our results provide insights toward manipulating magnetic topological states by applying established crystal growth theory, adapted to account for the new process of skyrmion mitosis.</p>
dc.identifier archive/lib.dr.iastate.edu/ameslab_manuscripts/615/
dc.identifier.articleid 1622
dc.identifier.contextkey 17490988
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ameslab_manuscripts/615
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/7555
dc.language.iso en
dc.relation.ispartofseries IS-J 10191; IS-J 10177
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_manuscripts/615/0-IS_J_10177_SI.pdf|||Sat Jan 15 01:17:06 UTC 2022
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_manuscripts/615/IS_J_10177.pdf|||Sat Jan 15 01:17:08 UTC 2022
dc.source.uri 10.1021/acs.nanolett.0c00080
dc.subject.disciplines Materials Chemistry
dc.subject.disciplines Materials Science and Engineering
dc.subject.disciplines Nanoscience and Nanotechnology
dc.subject.keywords Magnetic skyrmion
dc.subject.keywords skyrmion crystal
dc.subject.keywords nucleation
dc.subject.keywords growth mechanism
dc.subject.keywords Lorentz-TEM
dc.supplemental.bitstream IS_J_10177_SI.pdf
dc.title Mechanisms of Skyrmion and Skyrmion Crystal Formation from the Conical Phase
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication dde42145-89f3-44a9-ba38-5a6554a66ef5
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication bf9f7e3e-25bd-44d3-b49c-ed98372dee5e
File
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
IS_J_10177.pdf
Size:
2.62 MB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
0-IS_J_10177_SI.pdf
Size:
4.27 MB
Format:
Adobe Portable Document Format
Description:
Collections