Thermal comparison between ceiling diffusers and fabric ductwork diffusers for green buildings

Thumbnail Image
Date
2011-11-01
Authors
Fontanini, Anthony
Olsen, Michael
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Continuously increasing energy standards have driven the need for increasing the efficiency of buildings. Most enhancements to building efficiency have been a result of changes to the heating/cooling systems, improvements in construction materials, or building design code improvements. These approaches neglect the way in which air is dispersed into individual rooms or in a building – i.e., the ducting system. This opens up the possibility of significant energy savings by making ductwork systems lighter and better insulating while ensuring cost effectiveness.

The current study explores this idea by comparing the performance of conventional ductwork with recent advancements in fabric-based ductwork. We focus on the transient behavior of an on/off control system, as well as the steady state behavior of the two ductwork systems. Transient, fully three dimensional validated computational (CFD) simulations are performed to determine flow patterns and thermal evolution in rooms containing either conventional or fabric ductwork. This analysis is used to construct metrics on efficiency. A number of different flow rates are examined to determine the performance over a range of operating conditions. Transient finite volume simulations consisted of over 13 million degrees of freedom for over 10,000 time steps. The simulations utilized HPC (High Performance Computing) for the large scale analysis.

The results conclusively show that fabric ducting systems are superior to the conventional systems in terms of efficiency. Observations from the data show that fabric ducting systems heat the room faster, more uniformly, and more efficiently. The increase in performance demonstrates the potential benefits of moving away from conventional systems to fabric systems for the construction of green buildings: particularly in conjunction with adaptive control systems.

Comments

This is a manuscript of an article published as Fontanini, Anthony, Michael G. Olsen, and Baskar Ganapathysubramanian. "Thermal comparison between ceiling diffusers and fabric ductwork diffusers for green buildings." Energy and Buildings 43, no. 11 (2011): 2973-2987. DOI:10.1016/j.enbuild.2011.07.005. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections