Techniques for determining the minimum rank of a small graph

Thumbnail Image
Date
2010-06-01
Authors
DeLoss, Laura
Grout, Jason
McKay, Tracy
Smith, Jason
Tims, Geoff
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hogben, Leslie
Associate Dean
Research Projects
Organizational Units
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Abstract

The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Minimum rank is a difficult parameter to compute. However, there are now a number of known reduction techniques and bounds that can be programmed on a computer; we have developed a program using the open-source mathematics software Sage to implement several techniques. We have also established several additional strategies for computation of minimum rank. These techniques have been used to determine the minimum ranks of all graphs of order 7.

Comments

This is a manuscript of an article from Linear Algebra and its Applications 432 (2010): 2995, doi:10.1016/j.laa.2010.01.008. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections