Effects of dopants on the glass forming ability in Al-based metallic alloy

Thumbnail Image
Sun, Yang
Zhang, Feng
Yang, Lin
Song, Huajing
Mendelev, Mikhail
Wang, Cai-Zhuang
Ho, Kai-Ming
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Ames Laboratory

The effect of dopants on the metallic glass forming ability is usually considered based on the analysis of changes in the liquid structure or thermodynamics. What is missing in such considerations is an analysis of how a dopant changes the properties of the crystal phases which can form instead of the glass. In order to illuminate this aspect we performed molecular dynamics simulations to study the effects of Mg and Sm dopants on the crystal nucleation in Al. The simulation data were found to be consistent with the experimental observations that addition of Mg to Al does not lead to vitrification but addition of only 8% Sm does. The significant effect of Sm doping was related to the intolerance of Al to this dopant. This leads to increase in the solid-liquid interfacial free energy, and therefore, to increase in the nucleation barrier and to a dramatic decrease in the nucleation rate. The intolerance mechanism also significantly affects the growth kinetics.