Universal fluctuating regime in triangular chromate antiferromagnets

Thumbnail Image
Somesh, K.
Furukawa, Y.
Simutis, G.
Bert, F.
Prinz-Zwick, M.
Büttgen, N.
Zorko, A.
Tsirlin, A. A.
Mendels, P.
Nath, R.
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Iowa State University Digital Repository, Ames IA (United States)
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
We report x-ray diffraction, magnetic susceptibility, heat capacity, H-1 nuclear magnetic resonance (NMR), and muon spin relaxation (mu SR) measurements, as well as density-functional band-structure calculations for the frustrated S = 3/2 triangular lattice Heisenberg antiferromagnet (TLHAF) alpha-HCrO2 (trigonal, space group: R (3) over barm). This compound undergoes a clear magnetic transition at T-N less than or similar to 22.5 K, as seen from the drop in the muon paramagnetic fraction and concurrent anomalies in the magnetic susceptibility and specific heat capacity. Local probes (NMR and mu SR) reveal a broad regime with slow fluctuations down to 0.7 T-N, this temperature corresponding to the maximum in the mu SR relaxation rate and in the NMR wipe-out. From the comparison with NaCrO2 and alpha-KCrO2, the fluctuating regime and slow dynamics below T-N appear to be hallmarks of the TLHAF with ABC stacking. We discuss the role of interlayer frustration, which may have impacted recent spin-liquid candidates with triangular geometry.
This article is published as Somesh, K., Y. Furukawa, Gediminas Simutis, F. Bert, Markus Prinz-Zwick, Norbert Büttgen, Andrej Zorko, Alexander A. Tsirlin, P. Mendels, and R. Nath. "Universal fluctuating regime in triangular chromate antiferromagnets." Physical Review B 104, no. 10 (2021): 104422. DOI: 10.1103/PhysRevB.104.104422. Copyright 2021 American Physical Society DOE Contract Number(s): AC02-07CH11358; CRG/2019/000960; 107745057; ANR-18-CE30-0022; P2EZP2-178604; ANR-10-LABX-0039-PALM; P1-0125; BI-US/18-20-064; J1-2461; N1-0148; DMR-1644779. Posted with permission.
Subject Categories