Crystal growth and magnetic structure of MnBi2 Te 4

Thumbnail Image
Date
2019-06-07
Authors
Yan, J.-Q.
Zhang, Q.
Heitmann, T.
Huang, Zengle
Chen, K. Y.
Cheng, J.-G.
Wu, Weida
Vaknin, David
Sales, B. C.
McQueeney, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Millimeter-sized MnBi2Te4 single crystals are grown out of a Bi-Te flux and characterized using magnetic, transport, scanning tunneling microscopy, and spectroscopy measurements. The magnetic structure of MnBi2Te4 below TN is determined by powder and single-crystal neutron diffraction measurements. Below TN = 24 K, Mn2+ moments order ferromagnetically in the ab plane but antiferromagnetically along the crystallographic c axis. The ordered moment is 4.04(13)μB/Mn at 10 K and aligned along the crystallographic c axis in an A-type antiferromagnetic order. Below TN, the electrical resistivity drops upon cooling or when going across the metamagnetic transition in increasing magnetic fields. A critical scattering effect is observed in the vicinity of TN in the temperature dependence of thermal conductivity, indicating strong spin-lattice coupling in this compound. However, no anomaly is observed in the temperature dependence of thermopower around TN. Fine tuning of the magnetism and/or electronic band structure is needed for the proposed topological properties of this compound. The growth protocol reported in this work might be applied to grow high-quality crystals where the electronic band structure and magnetism can be finely tuned by chemical substitutions.

Series Number
Journal Issue
Is Version Of
Versions
Series
IS-J 9905
Academic or Administrative Unit
Type
article
Comments
Rights Statement
Copyright
Funding
DOI
Supplemental Resources
Collections