Viscoelastic Indentation and Resistance to Motion of Conveyor Belts Using a Generalized Maxwell Model of the Backing Material

Thumbnail Image
Date
2006-05-01
Authors
Reicks, Allen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Rudolphi, Thomas
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

A one-dimensional Winkler foundation and a generalized viscoelastic Maxwell solid model of the belt backing material are used to determine the resistance to motion of a conveyor belt over idlers. The viscoelastic material model is a generalization of the three-parameter Maxwell model that has previously been used to predict the effective frictional coefficient of the rolling motion. Frequency, or loading rate, and temperature dependence of the material properties are incorporated with the time/temperature correspondence principle of linear viscoelastic materials. As a consequence of the Winkler foundation model, a normalized indentation resistance is independent of the primary belt system parameters - carrying weight per unit width, idler diameter and backing thickness - as is the case for a three-parameter viscoelastic model. Example results are provided for a typical rubber compound backing material and belt system parameters.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Rubber Chemistry and Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.5254/1.3547939.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2006
Collections