Solid-State Nuclear Magnetic Resonance Spectroscopy-Assisted Structure Determination of Coordination Polymers

Thumbnail Image
Date
2022-08-23
Authors
Thomas, Brijith
Chang, Boyce S.
Chang, Julia J.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Authors
Person
Person
Rossini, Aaron
Professor
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract
The combination of advanced solid-state NMR spectroscopy, powder X-ray diffraction (PXRD), structure refinement, and quantum chemical calculations was used to determine the three-dimensional molecular structures of self-assembled, one-dimensional (1D) metal coordination polymers. The methodology is based on partial indexing of PXRD patterns followed by modeling using NMR constraints and, finally, Rietveld refinement and density functional theory (DFT) structure optimization. The protocol was first demonstrated on scandium acetate, a 1D coordination polymer with a known structure. The protocol was then applied to determine the crystal structures of nanocrystalline aluminum and gallium acetate hydroxide coordination polymers of unknown structures that were obtained by the etching of metallic nanoparticles in acidic solution. The PXRD and NMR-derived structures were validated by comparing the experimental and simulated PXRD patterns. Plane-wave DFT calculations confirm that the structures are energetically stable and that DFT-predicted NMR parameters are in reasonable agreement with the experimentally observed ones. The obtained molecular structures are in agreement with data from other characterization methods. The structure determination protocol demonstrated here should be applicable to analogous coordination polymers or porous framework materials.
Comments
This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Chemistry of Materials, copyright © 2022 American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.chemmater.2c00593. Posted with permission.
Description
Keywords
Citation
DOI
Copyright
Collections