A Matrix-Free Likelihood Method for Exploratory Factor Analysis of High-Dimensional Gaussian Data
dc.contributor.author | Dai, Fan | |
dc.contributor.author | Dutta, Somak | |
dc.contributor.author | Maitra, Ranjan | |
dc.contributor.department | Statistics (LAS) | |
dc.date | 2020-06-23T03:00:24.000 | |
dc.date.accessioned | 2020-07-02T06:57:46Z | |
dc.date.available | 2020-07-02T06:57:46Z | |
dc.date.copyright | Wed Jan 01 00:00:00 UTC 2020 | |
dc.date.embargo | 2021-02-07 | |
dc.date.issued | 2020-02-07 | |
dc.description.abstract | <p>This technical note proposes a novel profile likelihood method for estimating the covariance parameters in exploratory factor analysis of high-dimensional Gaussian datasets with fewer observations than number of variables. An implicitly restarted Lanczos algorithm and a limited-memory quasi-Newton method are implemented to develop a matrix-free framework for likelihood maximization. Simulation results show that our method is substantially faster than the expectation-maximization solution without sacrificing accuracy. Our method is applied to fit factor models on data from suicide attempters, suicide ideators, and a control group. <a href="https://doi.org/10.1080/10618600.2019.1704296" target="_blank">Supplementary materials</a> for this article are available online.</p> | |
dc.description.comments | <p>This is an Accepted Manuscript of an article published by Taylor & Francis in <em>Journal of Computational and Graphical Statistics</em> on February 7, 2020, available online: <a href="https://doi.org/https://doi.org/10.1080/10618600.2019.1704296" target="_blank">10.1080/10618600.2019.1704296</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/stat_las_pubs/303/ | |
dc.identifier.articleid | 1303 | |
dc.identifier.contextkey | 18208048 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | stat_las_pubs/303 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/90625 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/stat_las_pubs/303/2020_MaitraRanjan_MatrixFree.pdf|||Fri Jan 14 23:28:41 UTC 2022 | |
dc.source.uri | 10.1080/10618600.2019.1704296 | |
dc.subject.disciplines | Statistical Methodology | |
dc.subject.disciplines | Statistics and Probability | |
dc.subject.keywords | EM algorithm | |
dc.subject.keywords | fMRI | |
dc.subject.keywords | Lanczos algorithm | |
dc.subject.keywords | L-BFGS-B | |
dc.subject.keywords | Profile likelihood | |
dc.title | A Matrix-Free Likelihood Method for Exploratory Factor Analysis of High-Dimensional Gaussian Data | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 461ce0bf-36aa-4bb9-b932-789dacd4065d | |
relation.isOrgUnitOfPublication | 264904d9-9e66-4169-8e11-034e537ddbca |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2020_MaitraRanjan_MatrixFree.pdf
- Size:
- 1.51 MB
- Format:
- Adobe Portable Document Format
- Description: