A Matrix-Free Likelihood Method for Exploratory Factor Analysis of High-Dimensional Gaussian Data

dc.contributor.author Dai, Fan
dc.contributor.author Dutta, Somak
dc.contributor.author Maitra, Ranjan
dc.contributor.department Statistics (LAS)
dc.date 2020-06-23T03:00:24.000
dc.date.accessioned 2020-07-02T06:57:46Z
dc.date.available 2020-07-02T06:57:46Z
dc.date.copyright Wed Jan 01 00:00:00 UTC 2020
dc.date.embargo 2021-02-07
dc.date.issued 2020-02-07
dc.description.abstract <p>This technical note proposes a novel profile likelihood method for estimating the covariance parameters in exploratory factor analysis of high-dimensional Gaussian datasets with fewer observations than number of variables. An implicitly restarted Lanczos algorithm and a limited-memory quasi-Newton method are implemented to develop a matrix-free framework for likelihood maximization. Simulation results show that our method is substantially faster than the expectation-maximization solution without sacrificing accuracy. Our method is applied to fit factor models on data from suicide attempters, suicide ideators, and a control group. <a href="https://doi.org/10.1080/10618600.2019.1704296" target="_blank">Supplementary materials</a> for this article are available online.</p>
dc.description.comments <p>This is an Accepted Manuscript of an article published by Taylor & Francis in <em>Journal of Computational and Graphical Statistics</em> on February 7, 2020, available online: <a href="https://doi.org/https://doi.org/10.1080/10618600.2019.1704296" target="_blank">10.1080/10618600.2019.1704296</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/stat_las_pubs/303/
dc.identifier.articleid 1303
dc.identifier.contextkey 18208048
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath stat_las_pubs/303
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/90625
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/stat_las_pubs/303/2020_MaitraRanjan_MatrixFree.pdf|||Fri Jan 14 23:28:41 UTC 2022
dc.source.uri 10.1080/10618600.2019.1704296
dc.subject.disciplines Statistical Methodology
dc.subject.disciplines Statistics and Probability
dc.subject.keywords EM algorithm
dc.subject.keywords fMRI
dc.subject.keywords Lanczos algorithm
dc.subject.keywords L-BFGS-B
dc.subject.keywords Profile likelihood
dc.title A Matrix-Free Likelihood Method for Exploratory Factor Analysis of High-Dimensional Gaussian Data
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 461ce0bf-36aa-4bb9-b932-789dacd4065d
relation.isOrgUnitOfPublication 264904d9-9e66-4169-8e11-034e537ddbca
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2020_MaitraRanjan_MatrixFree.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
Collections