Closing in on Hill's conjecture

dc.contributor.author Balogh, József
dc.contributor.author Lidicky, Bernard
dc.contributor.author Salazar, Gelasio
dc.contributor.department Mathematics
dc.date 2019-09-22T17:36:20.000
dc.date.accessioned 2020-06-30T06:00:12Z
dc.date.available 2020-06-30T06:00:12Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2019
dc.date.issued 2019-01-01
dc.description.abstract <p>Borrowing Laszlo Szekely's lively expression, we show that Hill's conjecture is ``asymptotically at least 98.5% true." This long-standing conjecture states that the crossing number cr(Kn) of the complete graph Kn is H(n) := 1 4 \lfloor n 2 \rfloor \lfloor n 1 2 \rfloor \lfloor n 2 2 \rfloor \lfloor n 3 2 \rfloor for all n \geq 3. This has been verified only for n \leq 12. Using the flag algebra framework, Norin and Zwols obtained the best known asymptotic lower bound for the crossing number of complete bipartite graphs, from which it follows that for every sufficiently large n, cr(Kn) > 0.905H(n). Also using this framework, we prove that asymptotically cr(Kn) is at least 0.985H(n). We also show that the spherical geodesic crossing number of Kn is asymptotically at least 0.996H(n).</p>
dc.description.comments <p>This article is published as Balogh, József, Bernard Lidický, and Gelasio Salazar. "Closing in on Hill's Conjecture." <em>SIAM Journal on Discrete Mathematics</em> 33, no. 3 (2019): 1261-1276. doi: <a href="https://doi.org/10.1137/17M1158859">10.1137/17M1158859</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/math_pubs/182/
dc.identifier.articleid 1183
dc.identifier.contextkey 13167431
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/182
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/54571
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/182/2017_Lidicky_ClosingHillsPreprint.pdf|||Sun Oct 28 12:27:56 UTC 2018
dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/182/2019_Lidicky_ClosingHills.pdf|||Fri Jan 14 21:38:28 UTC 2022
dc.source.uri 10.1137/17M1158859
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.subject.disciplines Mathematics
dc.subject.keywords crossing number
dc.subject.keywords complete graph
dc.subject.keywords Hill's conjecture
dc.subject.keywords flag algebras
dc.title Closing in on Hill's conjecture
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication a1d8f5ab-9124-4104-981c-8ba1e426e3ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
File
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019_Lidicky_ClosingHills.pdf
Size:
455.07 KB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
2017_Lidicky_ClosingHillsPreprint.pdf
Size:
388.23 KB
Format:
Adobe Portable Document Format
Description:
Collections