Closing in on Hill's conjecture
dc.contributor.author | Balogh, József | |
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.author | Salazar, Gelasio | |
dc.contributor.department | Mathematics | |
dc.date | 2019-09-22T17:36:20.000 | |
dc.date.accessioned | 2020-06-30T06:00:12Z | |
dc.date.available | 2020-06-30T06:00:12Z | |
dc.date.copyright | Tue Jan 01 00:00:00 UTC 2019 | |
dc.date.issued | 2019-01-01 | |
dc.description.abstract | <p>Borrowing Laszlo Szekely's lively expression, we show that Hill's conjecture is ``asymptotically at least 98.5% true." This long-standing conjecture states that the crossing number cr(Kn) of the complete graph Kn is H(n) := 1 4 \lfloor n 2 \rfloor \lfloor n 1 2 \rfloor \lfloor n 2 2 \rfloor \lfloor n 3 2 \rfloor for all n \geq 3. This has been verified only for n \leq 12. Using the flag algebra framework, Norin and Zwols obtained the best known asymptotic lower bound for the crossing number of complete bipartite graphs, from which it follows that for every sufficiently large n, cr(Kn) > 0.905H(n). Also using this framework, we prove that asymptotically cr(Kn) is at least 0.985H(n). We also show that the spherical geodesic crossing number of Kn is asymptotically at least 0.996H(n).</p> | |
dc.description.comments | <p>This article is published as Balogh, József, Bernard Lidický, and Gelasio Salazar. "Closing in on Hill's Conjecture." <em>SIAM Journal on Discrete Mathematics</em> 33, no. 3 (2019): 1261-1276. doi: <a href="https://doi.org/10.1137/17M1158859">10.1137/17M1158859</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/182/ | |
dc.identifier.articleid | 1183 | |
dc.identifier.contextkey | 13167431 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/182 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/54571 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/182/2017_Lidicky_ClosingHillsPreprint.pdf|||Sun Oct 28 12:27:56 UTC 2018 | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/182/2019_Lidicky_ClosingHills.pdf|||Fri Jan 14 21:38:28 UTC 2022 | |
dc.source.uri | 10.1137/17M1158859 | |
dc.subject.disciplines | Discrete Mathematics and Combinatorics | |
dc.subject.disciplines | Mathematics | |
dc.subject.keywords | crossing number | |
dc.subject.keywords | complete graph | |
dc.subject.keywords | Hill's conjecture | |
dc.subject.keywords | flag algebras | |
dc.title | Closing in on Hill's conjecture | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a1d8f5ab-9124-4104-981c-8ba1e426e3ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |