A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height

Thumbnail Image
Date
2013-01-01
Authors
Deppe, Adam
Gallus, William
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Takle, Eugene
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model simulations with different planetary boundary layer (PBL) schemes showed little spread among the individual ensemble members for forecasting wind speed. A second configuration using three random perturbations of the Global Forecast System model produced more spread in the wind speed forecasts, but the ensemble mean possessed a higher mean absolute error (MAE). A third ensemble of different initialization times showed larger model spread, but model MAE was not compromised. In addition, postprocessing techniques such as training of the model for the day 2 forecast based on day 1 results and bias correction based on observed wind direction are examined. Ramp event forecasting was also explored. An event was considered to be a ramp event if the change in wind power was 50% or more of total capacity in either 4 or 2 h or less. This was approximated using a typical wind turbine power curve such that any wind speed increase or decrease of more than 3 m s21 within the 6–12 m s21 window (where power production varies greatly) in 4 h or less would be considered a ramp. Model MAE, climatology of ramp events, and causes were examined. All PBL schemes examined predicted fewer ramp events compared to the observations, and model forecasts for ramps in general were poor.

Comments

This article is from Weather and Forecasting 28 (2013): 212, doi: 10.1175/WAF-D-11-00112.1. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections